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ABSTRACT: Existing precipitation-type algorithms have difficulty discerning the occurrence of freezing rain and ice pel-
lets. These inherent biases are not only problematic in operational forecasting but also complicate the development of
model-based precipitation-type climatologies. To address these issues, this paper introduces a novel light gradient-boosting
machine (LightGBM)-based machine learning precipitation-type algorithm that utilizes reanalysis and surface observa-
tions. By comparing it with the Bourgouin precipitation-type algorithm as a baseline, we demonstrate that our algorithm
improves the critical success index (CSI) for all examined precipitation types. Moreover, when compared with the precipitation-
type diagnosis in reanalysis, our algorithm exhibits increased F1 scores for snow, freezing rain, and ice pellets. Subsequently, we
utilize the algorithm to compute a freezing-rain climatology over the eastern United States. The resulting climatology pattern
aligns well with observations; however, a significant mean bias is observed. We interpret this bias to be influenced by both the
algorithm itself and assumptions regarding precipitation processes, which include biases associated with freezing drizzle,
precipitation occurrence, and regional synoptic weather patterns. To mitigate the overall bias, we propose increasing the
precipitation cutoff from 0.04 to 0.25 mm h21, as it better reflects the precision of precipitation observations. This adjust-
ment yields a substantial reduction in the overall bias. Finally, given the strong performance of LightGBM in predicting
mixed precipitation episodes, we anticipate that the algorithm can be effectively utilized in operational settings and for
diagnosing precipitation types in climate model outputs.

SIGNIFICANCE STATEMENT: Freezing rain can have significant impacts on transportation and infrastructure,
making accurate prediction of precipitation types crucial. In this study, we use a machine learning method known as
LightGBM to predict precipitation types. We show that the new algorithm performs better than the existing methods for all
precipitation types examined. Additionally, we compute a freezing-rain climatology over the eastern United States. Although
the resulting climatology pattern corresponds well to observations, the algorithm overpredicts freezing-rain occurrence. We
argue that this bias can be substantially reduced by increasing the precipitation cutoff from 0.04 to 0.25 mm h21. Overall, this
work highlights the potential of the LightGBM algorithm for both weather forecasting and diagnosing precipitation types in
climate models.

KEYWORDS: Surface observations; Forecast verification/skill; Hindcasts; Classification; Decision trees;
Machine learning

1. Introduction

Accurate prediction of winter precipitation type is crucial
for both operational forecasting and understanding its change
in a warming climate (Stewart et al. 2015). Freezing rain, for
instance, is a hazardous weather phenomenon that can cause
severe socioeconomic impacts (DeGaetano 2000). Although
many precipitation-type algorithms can accurately diagnose rain
and snow, for example, Bourgouin (2000), they do not perform
as well with freezing rain and ice pellets (Reeves 2016). Com-
pounded by the chaotic nature of the atmosphere, predicting
precipitation type remains a challenge even at short lead times
(Ralph et al. 2005).

Precipitation-type algorithms roughly fall into two catego-
ries. Explicit algorithms output precipitation types based on a
cloud microphysics scheme, exemplified by the utilization of

the Thompson et al. (2008) microphysics scheme for precipitation-
type forecasts in the High-Resolution Rapid Refresh model
(Ikeda et al. 2013; Benjamin et al. 2016). In contrast, implicit
algorithms predict precipitation type based on vertical atmo-
spheric profiles (Ramer 1993; Bourgouin 2000; Reeves et al.
2016; Birk et al. 2021). There has been a notable shift toward
the utilization of machine learning methods for implicit
precipitation-type diagnosis. For example, Das et al. (2022)
combined Global Precipitation Measurement data with six
machine learning algorithms, such as XGBoost and 1D con-
volutional neural networks, to predict five precipitation
types. Various studies have also leveraged the power of ran-
dom forest to diagnose rain, snow, and sleet by using one or
more of reanalysis products, observed thermodynamic pro-
files, and radar data (Półrolniczak et al. 2021; Shin et al.
2022; Lang et al. 2023).

Despite these advancements, it is important to note several
limitations of the current methods. First, the implicit algo-
rithms are developed on a small amount of sounding data
(Bourgouin 2000; Reeves et al. 2016; Birk et al. 2021), and
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only Reeves et al. (2016) attempted to account for model un-
certainty, that is, the fact that models can only simulate the
vertical atmospheric profiles with some inherent error. How-
ever, after introducing errors to the sounding profile, Reeves
et al. (2016) reported a marked decrease in freezing-rain
hit rate. This result points to an increasing need for a
precipitation-type algorithm that performs well in models.

Second, while the adoption of machine learning methods for
precipitation-type diagnosis enhances statistical robustness, none
of the prior works aim to diagnose freezing rain (Półrolniczak
et al. 2021; Shin et al. 2022; Lang et al. 2023). And yet, the re-
search community has increasingly recognized the importance of
understanding freezing-rain changes in a warming world (IPCC
2022; Cheng et al. 2007; Lambert and Hansen 2011; Bresson et al.
2017; St-Pierre et al. 2019; McCray et al. 2022). Hence, an ideal
precipitation-type algorithm should possess the capability not
only to predict precipitation types in operational forecasts but
also to diagnose freezing rain within the context of climate
models.

Third, although researchers have successfully obtained a
realistic freezing-rain climatology by combining implicit
precipitation-type algorithms and dynamically downscaled re-
gional climate models, for example, McCray et al. (2022), we ar-
gue that bulk statistics are not conclusive evidence of algorithm
performance. For instance, although a precipitation-type algo-
rithm may derive a realistic freezing-rain climatology from rean-
alysis products, there can be multiple compensating biases that
produce a realistic climatology. Understanding the biases in
models is therefore important for interpreting the derived clima-
tology and its relationship with observations.

Our goal in this paper is to develop an accurate, machine
learning-based precipitation-type algorithm that addresses these
issues. Section 2 describes the dataset used in this project, in-
forms the reader about the light gradient-boosting machine
(LightGBM) algorithm used to predict precipitation type, and
discusses two applications of the algorithm. Section 3 presents
the results of these applications and discusses algorithm biases.
Section 4 interprets the LightGBM feature importance and
summarizes the study.

2. Materials and methods

a. Data

1) PRECIPITATION-TYPE OBSERVATIONS

We use the precipitation-type observations from meteorologi-
cal aerodrome reports (METARs) as the ground truth for our
algorithm. Since winter precipitation occurs most frequently be-
tween November and March (NDJFM), our study focuses on
these five months from 1979 to 2021. Although Automated Sur-
face Observation Systems (ASOS) gradually replaced human
observers in the late 1990s and early 2000s, some ASOS stations
still routinely augment ASOS with human observations. Thus,
to ensure the consistency of precipitation-type observations, we
only include routinely augmented ASOS stations from all states
east of the Rocky Mountains, with the exception of Florida,
where winter precipitation rarely takes place.

To select the METAR stations that continuously provide hu-
man observations in the study domain, we sample five observa-
tion periods for every METAR station from 1979 to 2021. The
five periods are 1–4 November 1979, 1–4 December 1989,
1–4 January 1999, 1–4 February 2009, and 1–4 March 2019.
These five periods provide a decent coverage for the study pe-
riod and allow us to robustly estimate the augmentation fre-
quency of each station. Then, we calculate the fraction of
nonaugmented observations (FNAO) in these five intervals by
counting the number of records without the “AUTO” tag. Last,
we classify the stations into four categories:

1) FNAO , 0.1 for all five observation periods (category-1
stations),

2) FNAO , 0.1 for four of the five observation periods
(category-2 stations),

3) FNAO , 0.5 for all five observation periods (category-3
stations), and

4) FNAO , 0.5 for four of the five observation periods
(category-4 stations).

The thresholds FNAO5 0.1 and FNAO5 0.5 are determined
based on the assumption that stations with FNAO , 0.1 have all
observations augmented, and that stations with FNAO , 0.5
have at least daytime observations augmented. All category-1 sta-
tions cannot be included, as stations in the northeastern United
States are augmented much more routinely than those in the
Great Plains. Instead, we would like to equally sample each geo-
graphical region to ensure that our algorithm can be generalized
to the contiguous United States east of the Rocky Mountains.
Thus, after classifying all stations into these four categories, we
select the stations using a greedy algorithm with the constraint of

1:3dlon 1 dlat , 1, (1)

where dlon, dlat are the differences in longitude and latitude
between each pair of stations, respectively. This constraint is
used because 1.38 of longitude is equivalent in distance to 18
of latitude at 308N. The greedy algorithm fills the entire do-
main with category-1 stations until no more stations can be
added without violating the distance constraint. Then, we re-
peat the same procedure for stations from category 2 to cate-
gory 4. This method yields a total of 169 stations for our study
(Fig. 1).

2) PRECIPITATION EVENT AGGREGATION

After obtaining the set of stations, we compile a training
dataset with the following criteria. First, we require that the
precipitation events are pure}that is, the precipitation events
should contain only a single precipitation type, such as rain,
snow, freezing rain, or ice pellets. Second, we assert that each
precipitation event should last at least two hours. These two
criteria are justified by the fact that short-duration and mixed pre-
cipitation episodes are not representative of each precipitation
type. Third, we differentiate one precipitation event from another
using a 6-h “null” period. For instance, the freezing-rain episode
from 2000 to 2300 UTC on a particular day is considered to be a
different event from the episode ending at 1300 UTC, because
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the two events are separated by a 7-h null period. With these
requirements, we identify ;170000 rain events, ;120000 snow
events, ;7000 freezing-rain events, and ;1500 ice-pellet events
in NDJFM from 1979 to 2021.

To tackle the class imbalance problem, we down-sample the
dominant precipitation classes (rain and snow) by randomly se-
lecting 30000 rain events, 30000 snow events, 2500 freezing-rain
events, and 1300 ice-pellet events for training and evaluating the
algorithm. We use the hindcast experiment [see section 2e(2)]
to determine the number of selected events for each precipita-
tion type, thus ensuring a relatively unbiased training dataset.

3) ERA5 REANALYSIS

We use the hourly data from the ERA5 reanalysis (Hersbach
et al. 2020) to select the predictors for our precipitation-type al-
gorithm. The reanalysis product is run on 137 levels up to 1 Pa
at a 0.258 horizontal resolution. To prepare the training data, we
utilize the .interp function in Xarray to bilinearly interpolate the
atmospheric fields from ERA5 to (i) the median time of each
precipitation event and (ii) the location of each station, as each
precipitation occurs at a unique location and time. For example,
if a snow episode occurs from 1200 to 1430 UTC at Buffalo,
New York, the atmospheric fields interpolated to 42.94088N,
78.73588W at 1315 UTC will be used as the input data for the al-
gorithm. It is worth mentioning that the outcomes are very simi-
lar when preparing the training data with or without temporal
interpolation.

b. Precipitation-type algorithms

1) THE BOURGOUIN PRECIPITATION-TYPE ALGORITHM

The Bourgouin precipitation-type algorithm is a popular algo-
rithm in operational forecast and climate models (Bourgouin

2000). The algorithm utilizes the “area” method: it finds melting
energy and refreezing energy by integrating the sounding profile
against the 08C line. It then classifies the precipitation types into
rain (RA), snow (SN), freezing rain (FZRA), ice pellets (PL), a
rain–snow mix (RASN), and a freezing rain–ice pellet mix
(FZRAPL) based on melting energy, refreezing energy, and sur-
face temperature. Although there have been efforts to improve
the Bourgouin algorithm, for example, through the use of wet-
bulb temperature and a precipitation-generation layer (Birk et al.
2021), the original Bourgouin algorithm remains one of the sim-
plest and the most widely used precipitation-type algorithms
(Bresson et al. 2017; Zarzycki 2018; Jeong et al. 2019; Matte et al.
2019; St-Pierre et al. 2019; McCray et al. 2022). Thus, the
Bourgouin algorithm is chosen as the first baseline in this
paper, with the slight modification that it only outputs RA,
SN, FZRA, and PL. The mixed classes RASN and FZRAPL
are automatically merged into the four precipitation types based
on the decision boundary described in Bourgouin (2000) since
our training data only contain pure precipitation episodes.

2) ERA5 PRECIPITATION TYPES

The ERA5 global reanalysis product diagnoses a variety of
precipitation types near 08C, including rain, wet snow, dry
snow, mixed rain and snow, freezing rain, and ice pellets. It
makes a prediction based on the depth of the melting layer and
consequently the fraction of liquid mass to total particulate
mass (Owens and Hewson 2018). In this paper, we use the
ERA5 precipitation type as the second baseline because the
precipitation-type diagnosis from the European Centre for
Medium-Range Weather Forecasts is widely used in operational
settings. To achieve a one-to-one correspondence with our
precipitation-type algorithm, we merge ERA5’s dry snow and
wet snow into one class and discard all mixed-rain-and-snow

FIG. 1. The locations of the 169 ASOS stations employed in this study.
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predictions. In other words, when ERA5 predicts RASN, the
data point is deemed invalid such that it does not impact the
performance of ERA5.

3) USING MACHINE LEARNING TO PREDICT

PRECIPITATION TYPES

Machine learning techniques have been shown to excel in
many atmospheric science problems, such as moist parameteriza-
tion and numerical weather prediction (Herman and Schumacher
2018; Bi et al. 2023). Although machine learning sometimes re-
ceives criticism for the lack of interpretability, researchers have
shown that tree-based algorithms and neural networks can offer
valuable insights into the prediction process (O’Gorman and
Dwyer 2018; Toms et al. 2020). For this reason, we test several al-
gorithms that fall into these categories and compare their perfor-
mance (see appendix A). We find that LightGBM has the
highest area under the receiver-operating characteristic (AUC)
score among all the algorithms and select it as the method of
choice for this study. AUC measures the balance of false positive
rate against hit rate.

LightGBM is a gradient-boosting decision tree (GBDT)
framework (Ke et al. 2017). In general, GBDT iteratively com-
bines weak learners into a strong learner by utilizing the gradi-
ent information from a predefined loss function (Chen and
Guestrin 2016). While this characteristic gives it a considerable
advantage over random forest that trains each individual tree
separately, it incurs a higher computational cost and does not
scale to large machine-learning problems. To address this issue,
Ke et al. (2017) proposes the LightGBM framework that has
numerous advantages over traditional GBDT. First, LightGBM
discretizes continuous data into several bins in a histogram,
which reduces the amount of time to traverse through the data
points to find a perfect split. Second, LightGBM spends most of
its training time on the “edge cases” in which the gradient of
the loss function is large [referred to as gradient-based one-side
sampling in Ke et al. (2017)]. This technique allows the classifier
to focus on hard-to-separate cases, such as freezing rain and ice
pellets, to achieve a higher accuracy in these categories. These
two advances, among others, make LightGBM a powerful algo-
rithm for numerous machine learning problems [see Ke et al.
(2017) for a more detailed discussion].

To use LightGBM for precipitation-type predictions, we
need to select a few predictors. After training and evaluating
the algorithm using variables such as geopotential height and
vertical velocity, we find that temperature and relative humid-
ity best predict the precipitation types. Subsequently, we use
1000–500-hPa temperature (16 levels; 25-hPa interval up to
750 hPa and 50-hPa interval up to 500 hPa), surface tempera-
ture, 1000–500-hPa relative humidity (the same levels as temper-
ature), and surface relative humidity to train LightGBM with a
total of 34 predictors. The relative humidity is constrained to be-
tween 0% and 100% for best results with LightGBM.

Intuitively, LightGBM is made up of multiple decision trees
that consist of if-else branches. As an illustrative example in
Fig. 2, the first decision tree in LightGBM has two if-else
branches: the first branch diagnoses snow using 950 hPa tem-
perature, and the second branch differentiates between rain

and freezing rain with surface temperature. LightGBM then
predicts the precipitation type by taking the majority vote
from a suite of decision trees. We refer the readers to Chen
and Guestrin (2016) for a more detailed discussion of the
gradient tree boosting algorithm. The technical details of
tuning LightGBM with 10-fold cross validation are ex-
plained in appendix B.

c. Performance metrics

We use five performance metrics in this paper: precision [suc-
cess ratio (SR)], recall [probability of detection (POD)], F1 score,
critical success index (CSI), and bias. We define each of them as
follows:

P 5 precision 5
TP

TP 1 FP
, (2)

R 5 recall 5
TP

TP 1 FN
, (3)

F1 5
2

R21 1 P21 , (4)

CSI 5
TP

TP 1 FP 1 FN
5 (R21 1 P21 2 1)21; and (5)

B 5 bias 5 R/P, (6)

where TP, FP, and FN are true positives, false positives, and
false negatives, respectively. We note the following: 1) Bias is
defined as the ratio between recall and precision. A bias
larger than 1 suggests that an algorithm overpredicts a precip-
itation type, and the opposite indicates underprediction.
2) The F1 score is a harmonic mean of precision and recall.
The metric maximizes when bias ’ 1, because R21 and P21 in
the denominator act as a penalizing term when R or P gets
too small. 3) CSI is a “sister” of F1 that shifts the denominator
of F1 score by 1. An advantage of CSI is that it naturally oc-
curs as contours on precision–recall plots, thus allowing us to
use only one metric to interpret the result.

d. Defining hits in observations

While LightGBM is trained on precipitation events lasting
more than two hours, the classifier should also achieve high
performance with mixed and transient events. But since it
could be challenging for reanalysis products to simulate the
predominant precipitation type, we define hits using the no-
tion of “any”}that is, if a precipitation type occurs within a
given hour, we say that it is a hit regardless of the duration.
However, as LightGBM only outputs one precipitation type,
defining hits in this fashion could make our results vulnerable
to inherent biases. For example, an algorithm biased toward
predicting FZRA in FZRAPL would not achieve a high recall
with PL, even though the prediction is partially correct. To
tackle this problem, we adopt a looser definition of hits for
mixed precipitation: if two precipitation types occur within
the same hour, our algorithm would still be considered correct
even if it only outputs one of the two types. Together, the two
definitions enable us to examine, in unbiased fashion, whether
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our algorithm correctly predicts precipitation types in reanaly-
sis products.

e. Using bootstrapping to validate performance

1) A FREEZING-RAIN CLIMATOLOGY

To further validate the performance of LightGBM, we use
bootstrapping to generate a climatology of freezing rain and
compare it with observations. As our study focuses on freezing-
rain occurrence in NDJFM from 1979 to 2021, we divide the
215 months of reanalysis data into 43 buckets, with each bucket
corresponding to a mix of five months from different years, for
example, November 2012, December 1990, and January 2008.
Then, after selecting a bucket, we exclude all precipitation
events in the bucket from training data. We use the remaining
subset of precipitation events to train LightGBM and apply it to
the 5-month period. Last, we repeat the procedure for every
bucket to produce a 43-yr climatology (1979–202; NDJFM).
This approach ensures that LightGBM has not observed the
correct labels a priori.

Additionally, we only count freezing-rain observations
when ERA5 outputs an hourly precipitation rate of more
than 0.04 mm h21, which is consistent with prior studies
(McCray et al. 2022). The goal is to reduce drizzling bias in
models to create a more realistic climatology. We also con-
duct a sensitivity test to see whether a higher precipitation
threshold, that is more representative of the precision of
precipitation measurements, leads to better performance.

2) PERFORMING A HINDCAST EXPERIMENT

Since we only validate the performance of the algorithm on
precipitation events lasting more than 2 h, we also need a
rough estimate of its accuracy in mixed precipitation episodes.
We use bootstrapping to perform a hindcast experiment. Spe-
cifically, we randomly select 40 stations from the category-1

stations with a modified distance constraint}that is, 1.3dlon 6
dlat , 2.5}and divide the 40 stations into 10 buckets such that
each bucket has four stations. For each bucket, we remove the
four stations from training data and use the remaining events to
train LightGBM. By running the algorithm on hourly ERA5
data in NDJFM from 1979 to 2021, we utilize the two hit defini-
tions in section 2d to assess its performance against the precipi-
tation type provided by ERA5. Last, we require that both
ERA5 and METARs record the four precipitation types that
LightGBM aim to diagnose via the following criteria:

1) ERA5 resolves one of the four precipitation types (RASN
is excluded),

2) ASOS records one of the four precipitation types, and
3) ERA5 records a minimum precipitation intensity of

0.25 mm h21.

These criteria allow us to accurately evaluate the errors re-
sulting from precipitation typing because the error can be de-
composed as

« 5 «forecast 1 «precip 1 «ptype, (7)

where « is the total error, «forecast is the forecast lead time error,
«precip is the precipitation error (i.e., when ERA5 falsely resolves
precipitation or fails to resolve precipitation), and «ptype is the
precipitation-type error. Since the forecast error is 0 in reanaly-
sis products, the second constraint allows us to minimize «precip
so that we could focus on the precipitation-type error.

3. Results

a. Algorithm performance and the dependence on
horizontal resolution

LightGBM outperforms the Bourgouin algorithm in nearly
every category and demonstrates superiority in freezing-rain

FIG. 2. A schematic diagram of the LightGBM classifier developed in this paper. The predictors are blue circles
(1000–500-hPa temperature), dark-blue circles (surface temperature), pink circles (1000–500-hPa relative humidity),
and red circles (surface relative humidity). The predictions are green circles (rain), yellow circles (freezing rain), and
gray circles (snow). Ice pellets are omitted in this schematic diagram for simplicity.
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prediction in particular (Fig. 3), as the CSI score (0.45) is
higher than that of Bourgouin (0.33) (Table 1). Although the
hit rate of LightGBM is slightly lower than that of Bourgouin
for ice pellets, we note that maximizing success ratio over hit
rate could lead to a higher overall CSI in mixed events be-
cause most ice-pellet precipitation episodes cooccur with rain
or snow (Reeves 2016). Using observational estimates from
hindcast experiments described in section 2b, we plot the ex-
pected precision and recall for mixed ice-pellet episodes (pur-
ple colors in Fig. 3). The inclusion of mixed events allows
LightGBM to gain a significant advantage over the Bourgouin
algorithm in ice-pellet prediction, with the CSI score increas-
ing from 0.33 to 0.53 (Table 1). The precipitation typing from
ERA5 is not shown because the median time of precipitation
events can occur at any time, whereas ERA5 only outputs
precipitation type on the hour.

To test the algorithm’s dependence on horizontal resolu-
tion, we upscale the ERA5 data conservatively with the
Python xESMF package to 18 resolution. We find that the

performance of LightGBM does not depend on the grid reso-
lution, except for ice pellets, where precision and recall de-
crease by about 0.03 when coarsening the data (Fig. 3). It is
noteworthy that this diminished accuracy may be explained
by the loss of nuanced temperature and humidity fields essen-
tial for accurate ice-pellet predictions during the upscaling
process.

Apart from the caveat, this result is generally congruent
with Reeves (2016), who reported that the performance of
common precipitation-type algorithms does not vary with the
horizontal resolution ranging from 3 to 36 km. The invariance
with grid spacing might stem from the fact that persistent pre-
cipitation events tend to be associated with slow-moving sys-
tems that span a large area. As a result, LightGBM would still
be able to identify the quintessential characteristics of rain,
snow, and freezing rain even if many small-scale features
were smoothed out.

b. Hindcast experiment with ERA5

The results of the hindcast experiment are shown in Fig. 4,
where we compare the performance of the LightGBM al-
gorithm with the native precipitation typing in ERA5. We
note that the recall rate from LightGBM is significantly
higher than ERA5 for freezing rain and ice pellets for
both the pure and mixed definitions, despite a marginally
lower precision for freezing rain. In contrast, LightGBM
obtains a much higher precision than ERA5 for ice pellets
(Figs. 4b,d) and snow (not shown). The higher precision
for snow leads to a higher mean F1 score (LightGBM

FIG. 3. The 10-fold cross validation performance of LightGBM (0.258 and 18) and the Bourgouin
precipitation-type algorithm (0.258) with precipitation events described in section 2a. An expla-
nation of cross validation methods can be found in appendix B. The 18 performance metrics are
obtained by training and evaluating on the algorithm on 18 ERA5 data. The gray parabolas are
contours of CSI, and the dashed brown lines are contours of bias (Roebber 2009).

TABLE 1. A CSI comparison of the Bourgouin algorithm and the
10-fold cross validation score of LightGBM. For each precipitation
type, boldface type indicates the best performance.

Precipitation type Bourgouin LightGBM

Rain 0.8767 0.9309
Snow 0.8560 0.9263
Freezing rain 0.3293 0.4517
Ice pellet 0.2144 0.2787
Ice pellet (mix) 0.3289 0.5322
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0.923 vs ERA5 0.900), whereas the mean F1 score for rain
is nearly identical for both algorithms (0.978 vs 0.973).

Furthermore, when precipitation errors are removed
(«precip 5 0), LightGBM shows limited bias in freezing
rain for the no-mix definition (Fig. 4a). We note that the
average precision and recall are similar, that is, bias ’ 1,
which indicates that LightGBM does not overpredict
freezing rain on average. Conversely, the underprediction
in ice pellets arises from the trade-off between an unbiased
prediction of mixed events and a high recall rate with ice
pellets (Figs. 4b,d). In this paper, we advocate for prioritiz-
ing unbiased predictions of mixed events for their practical
application in operational settings. However, if the aim is
to produce an ice-pellet climatology, an alternative algo-
rithm that achieves higher recall and a mean bias closer to
1 might be a more suitable choice.

c. Observed and simulated climatology of freezing rain

We show the comparison between observations and the
LightGBM-based climatology in Fig. 5. The observed clima-
tology uses the “any” definition introduced in section 2d; we
simply count whether freezing rain occurs at a given hour in-
stead of analyzing whether it is the predominant precipitation
type (Fig. 5a). The LightGBM climatology corresponds well
to observations (Fig. 5b), with multiple local freezing-rain
maxima over the Great Plains and the Appalachians. It also
replicates the distinctive freezing-rain shadow to the west of
the Appalachians (Bernstein 2000). Additionally, we notice
that there is a salient freezing-rain maximum in the Black
Hills in South Dakota and provide an explanation for its oc-
currence in section 4.

A major caveat of this result is that LightGBM significantly
overpredicts freezing-rain occurrence for nearly the entire

FIG. 4. Precision and recall of LightGBM and the ERA5 precipitation-type algorithm in the hindcast experiment
for 40 stations. The four panels show the accuracy of the two algorithms in predicting (a) freezing rain; (b) ice pellets;
(c) freezing rain, assuming that mixes are hits; and (d) ice pellets, assuming that mixes are hits. See section 2d for a de-
tailed definition of hits. The curves are kernel density estimates of the two metrics for each precipitation-type algo-
rithm. The texts on the upper-right corner in each plot indicates the average F1 score of all stations evaluated in the
hindcast experiment.
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study domain (Figs. 5b,c). The overprediction bias can reach
more than 170% in the southern Great Plains where annual
mean freezing-rain hours are low. This bias can be eliminated
by choosing a higher precipitation threshold of 0.25 mm h21

(Figs. 5d,e). We argue that the 0.25 mm h21 threshold is a bet-
ter choice and can indeed help to reduce numerous biases
(see discussion in section 3d).

d. Algorithm bias

1) FREEZING-DRIZZLE BIAS AND PRECIPITATION BIAS

To understand the biases observed in the freezing-rain
climatology, we revisit the forecast error decomposition in

Eq. (7) and note that the precipitation error «precip is not 0
when producing the climatology. In other words, we do not
enforce that freezing rain should only occur when METAR
reports one of the four precipitation types. This treatment de-
viates from that in the hindcast experiment and contributes to
freezing-rain biases in reanalysis products.

To delve into the precipitation error term «precip, it is neces-
sary to examine a new precipitation type: freezing drizzle. Un-
like freezing rain, which is formed through the melting process,
freezing drizzle is primarily produced by collision–coalescence
(Cortinas et al. 2004). Because the hydrometeors are small
when drizzling, the consensus is that precipitation intensity

FIG. 5. (a) The observed annual mean freezing-rain frequency (NDJFM; 1979–2021). The green triangles and pur-
ple triangles respectively denote category-1 and category-2 stations, and the green crosses and purple crosses respec-
tively denote category-3 and category-4 stations [see section 2a(1)]. (b) The annual mean freezing-rain frequency
obtained by running LightGBM on ERA5 data (NDJFM; 1979–2021) with a precipitation cutoff of 0.04 mm h21.
(c) The difference between the derived climatology and observation, namely, (b) 2 (a). (d) As in (b), but with a pre-
cipitation cutoff of 0.25 mm h21; (e) as in (c), but with (d)2 (a).
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should be small, and thus freezing drizzle should have been
filtered out of ERA5 using the 0.04 mm h21 criterion. To test
this assumption, we apply LightGBM to a list of pure freezing-
drizzle events lasting more than 2 h and collect the predicted
precipitation type (Fig. 6). The pie chart reveals that snow is
the most similar precipitation type to freezing drizzle (51.8%),
with freezing rain being the second (33.9%). But among the
cases when freezing rain is predicted, about 75% have a precipi-
tation rate exceeding 0.04 mm h21, which accounts for 25.4%
of the freezing-drizzle events. Although this bound is likely pes-
simistic due to the inclusion of only long-duration events, the
bias could contribute significantly to the simulated freezing-rain
climatology, especially when freezing drizzle is the predominant
type of freezing precipitation locally. Green Bay, Wisconsin, for
instance, observes 57% of its total freezing precipitation as
freezing drizzle but only 25% as freezing rain (Bernstein 2000).
As a result, LightGBMmay output freezing rain 50%more fre-
quently than observation due to drizzling bias alone. We could
further confirm this result by relaxing the second criterion in
the hindcast experiment to calculate the situation in which

1) LightGBM predicts freezing rain and METAR reports
one of the four precipitation types (limited bias),

2) LightGBM predicts freezing rain and METAR reports
drizzle and freezing drizzle (drizzling bias), or

3) LightGBM predicts freezing rain and METAR reports no
precipitation (precipitation bias).

Figure 7a demonstrates that freezing drizzle can contribute
considerably to the local freezing-rain signal if a precipitation cut-
off of 0.04 mm h21 is used, particularly over the freezing-drizzle
maximum in the northern Great Plains (Cortinas et al. 2004).

However, precipitation bias plays an even more prominent
role in the simulated climatology, which stem from various
sources including but not limited to observation bias, that is,
METAR/ASOS fails to report precipitation when it should,
the fact that reanalysis products cannot accurately capture
the beginning of freezing-rain episodes due to evaporative
cooling (McCray et al. 2020), or simply false alarms of pre-
cipitation events. Although a higher precipitation threshold
can decrease these biases, it does not eliminate all of them
(Fig. 7b). This result suggests that despite the high correla-
tion between the observational and the LightGBM climatol-
ogy (Fig. 5e), some of the predicted freezing-rain events
still correspond to freezing-drizzle episodes or falsely re-
solved precipitation events. Regardless, the higher precipi-
tation threshold of 0.25 mm h21 facilitates an “apples to
apples” comparison between the LightGBM climatology
and observations to better evaluate model output.

2) REGIONAL BIAS

Aside from the precipitation and freezing-drizzle bias, we ar-
gue that the bias may also be attributed to the different synoptic
weather patterns that lead to freezing rain in each region. For
example, Bernstein (2000) discovered that freezing-rain events
in the southeastern United States are associated with a deep,
warm melting layer that yields a more distinctive freezing-rain
signature. In contrast, when mixed precipitation events are de-
veloped farther inland, the inversion might become more subtle
due to a shallower warm layer aloft.

This difference in turn leads to regional bias. In Fig. 8, we
partition the stations into two halves based on latitude. Sta-
tions situated north of 378N tend to cluster toward the lower

FIG. 6. The precipitation types resulting from running LightGBM on pure freezing-drizzle events lasting more than 2 h.
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portion of the precision–recall plot, indicating a tendency for
underprediction bias. We note that this pattern is consistent
with Fig. 5, with underprediction bias in the northern regions
partially reconciled by the more prominent freezing-drizzle
and precipitation bias in the Great Plains (Fig. 7). Notably, the
observed pattern is mirrored in ERA5 precipitation diagnostics,
where stations in the southern region consistently exhibit a
higher recall-to-precision ratio than their northern counterparts.

In addressing the regional bias, we train a separate LightGBM
classifier with latitude and longitude as the additional predictors.
Interestingly, the result reveals a slightly increased precision and
recall for freezing rain by approximately 1%, but a corresponding
decrease in scores for other precipitation types}about 1% for
ice pellets and 0.2% for rain and snow. Our interpretation is that
latitude and longitude, while enhancing performance for freezing
rain, may act as confounding variables for rain, snow, and ice pel-
lets, ultimately diminishing their prediction accuracy. Therefore,

this experiment not only highlights the distinct spatial depen-
dence of freezing rain but also underscores the potential chal-
lenges introduced by including latitude and longitude as
additional parameters. Nonetheless, since LightGBM produces
a curve of kernel density estimates with a smaller standard de-
viation than ERA5, machine learning methods should act as
an interesting avenue to mitigate such regional biases.

3) ELEVATION BIAS

Algorithms that train on pressure-level data are susceptible
to elevation bias since ERA5 interpolates atmospheric varia-
bles to below the surface layer (Trenberth et al. 1993). For in-
stance, a freezing-rain event in western Nebraska might have
a surface temperature and pressure of 218C and 900 hPa, re-
spectively, but the 950- and 1000-hPa temperatures might well
exceed 08C. In contrast, a freezing-rain episode at Ohio

FIG. 7. The biases associated with each station in the hindcast experiment with a cutoff of
(a) 0.04 and (b) 0.25 mm h21.
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Valley might have a 1000-hPa layer below 08C because of a
subfreezing surface layer. This difference introduces a posi-
tive temperature bias in the boundary layer, potentially con-
tributing to a negative freezing-rain signal.

To test this hypothesis, we develop an additional classifier
with temperature and relative humidity from the lowest
43 model levels as predictors and use it to derive a freezing-
rain climatology (appendix D). No substantial difference is
evident between the two classifiers (Fig. D1 of appendix D).
This result indicates that LightGBM exhibits relative insensi-
tivity to elevation bias and underscores that diverse biases in
different regions stem from prevailing synoptic weather pat-
terns. Further insights into why LightGBM demonstrates this
robustness to elevation bias are explored in section 4.

4) OBSERVATION BIAS AND INTERPOLATION BIAS

The substantial freezing-rain bias observed in the Great
Plains, at the border of Mississippi and Alabama, and in the
Appalachians may find an explanation in observation bias
(Fig. 5). In Fig. 5a, we overlay the observation quality of each
station onto the observed climatology. Notably, regions dis-
playing a significant freezing-rain bias often coincide with
category-3 and category-4 stations (green and purple crosses

in Fig. 5a), where observations are augmented only one-half
of the time. It is important to highlight that this situation
could introduce an underprediction bias, particularly in the
pre-ASOS era when there were no automated means to infer
the occurrence of freezing rain. Potential biases may still per-
sist after the employment of ASOS observations, as the occur-
rence of freezing rain is inferred from the abnormal vibration
frequency of the freezing-rain sensor. Conversely, regions with a
high density of category-1 and category-2 stations, where human
augmentation is frequent, exhibit lower freezing-rain bias. Conse-
quently, the interpretation of bias in regions lacking category-1
and category-2 stations should be approached with caution.

4. Discussion and conclusions

a. A physical interpretation of feature importance

LightGBM is highly explainable because it outputs feature
importance (Fig. 9), which is obtained through the Light-
GBMClassifier in the Python LightGBM package with impor-
tance type set to “gain.” Feature importance measures the
decrease in the loss function at each node of a tree that splits on
a particular feature [see Eq. (7) in Chen and Guestrin (2016) for
more details].

FIG. 8. As in Fig. 4a, but with stations north of 378N and south of 378N plotted separately. The
solid lines indicate the kernel density estimates for stations south of 378N, and the dashed lines
indicate the kernel density estimates for stations north of 378N.
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Two key implications emerge from Fig. 9. First, the two most
important predictors are surface and 875-hPa temperature. This
result aligns with the observation that temperature profiles tend
to intersect the 08C isotherm at 875 hPa for hard-to-separate
precipitation cases. Intriguingly, surface temperature proves to
be an order of magnitude more important than temperature at
the lower levels, potentially contributing to the algorithm’s ro-
bustness to elevation bias. The freezing-rain bias over the Black
Hills can also be attributed to LightGBM potentially overem-
phasizing the importance of surface temperature. Although this
bias can be eliminated by using model-level data as predictors
(see Fig. C1 in appendix C), note that we lack a robust observa-
tional record in this location, and the primary focus of the study
is not on diagnosing freezing-rain frequency in high terrain.

Second, relative humidity proves crucial for correctly di-
agnosing precipitation types. While temperature generally
takes precedence over relative humidity, this dynamic re-
verses above 600 hPa. This shift underscores the significance
of the precipitation generation layer in diagnosing precipita-
tion types (Birk et al. 2021). Specifically, more freezing precipi-
tation is observed if ice nucleation does not occur, and ice
nucleation is directly dependent on temperature. Similarly, the algo-
rithm demonstrates a strong dependence on surface relative humid-
ity, echoing the understanding that dry, cool layers near the surface
may play a significant role in ice-pellet formation (Bernstein 2000).

To test the sensitivity of each precipitation type to relative hu-
midity, we train a LightGBM classifier with only temperature as
predictors. This new algorithm shows a marked decrease in re-
call for freezing rain and ice pellets by 3% and 7%, respectively,
while both recall and precision remain constant for rain and
snow. Considering the collective influence of the precipitation-

generation layer and boundary layer moisture, we contend that
explicitly incorporating relative humidity as predictors repre-
sents an enhancement over algorithms that only use tempera-
ture as predictors (Bourgouin 2000). This result highlights the
importance of modeling relative humidity for effectively distin-
guishing between freezing rain and ice pellets.

b. Conclusions

In this study, we develop a LightGBM classifier to diagnose
the precipitation type using ERA5 reanalysis. Our algorithm
shows a considerable improvement over the Bourgouin algo-
rithm and the ERA5 precipitation-type diagnosis, provided that
precipitation episodes are correctly simulated. However, when a
precipitation cutoff of 0.04 mm h21 is used, the algorithm sub-
stantially overpredicts freezing-rain frequency across the study
domain due to either drizzling bias or precipitation bias. These
biases can be reduced but not eliminated entirely by specifying
the precipitation cutoff as 0.25 mm h21 to coincide with the pre-
cision of rainfall observations.

Therefore, it is crucial to realize the limitations of using pre-
cipitation-type algorithms to compute a freezing-rain climatol-
ogy. Climate modelers and research scientists should investigate
the inherent biases of each model before drawing quantitative
conclusions about projected freezing-rain changes in a future cli-
mate. Although precipitation biases in models can remain un-
changed with warming, making such assumptions requires us to
carefully examine the synoptic conditions associated with these
false positives. For example, freezing drizzle in the Great Plains
can be caused by the passage of an Arctic cold front, as the intru-
sion of dry air in the midlayer inhibits the collision–coalescence
process (Bernstein 2000; Fernández-González et al. 2014). While

FIG. 9. Feature importance of the LightGBM classifier. The error bar on the surface tempera-
ture/surface relative humidity (950–1025 hPa) indicates a canonical range of values that the sur-
face pressure can take when observing precipitation.
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the research community agrees that the number of cold
spells will decrease with global warming, understanding
the changes to this synoptic weather pattern and its rela-
tionship with freezing-drizzle bias will allow us to further
reduce projection uncertainty.

Additionally, the method employed in this paper is applicable
to mesoscale precipitation-type predictions at short forecasting
lead times. For example, with High-Resolution Rapid Refresh
(HRRR) hindcasts and surface observations, it might be possi-
ble to further increase the performance of LightGBM by select-
ing cloud and microphysics parameters that physically represent
precipitation processes. Jensen et al. (2023) also demonstrated
the potential of machine learning to diagnose supercooled large
droplets, hence improving the predictability of freezing rain and
freezing drizzle. In this regard, postprocessing model output
with machine learning is an intriguing pathway to generate
more accurate forecasts (Chantry et al. 2021).

LightGBM, however, has its limitations: it is a single-
column method and neglects the large-scale conditions lead-
ing to these precipitation episodes. For this reason, we argue
that the method could also be improved by incorporating ad-
ditional predictors from the synoptic environment.

Nonetheless, we prove that LightGBM is a promising
tool to predict precipitation types, interpret biases in the
freezing-rain climatology, and understand physical pro-
cesses that distinguish between freezing rain and ice pel-
lets. A test case to use this algorithm to project future
freezing-rain changes based on climate models will be ex-
amined in our next paper.
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APPENDIX A

Performance Comparison of Different Machine
Learning Algorithms

In this paper, we test five different machine learning algo-
rithms in Python: nonlinear support vector machines (SVM),
1D convolutional neural networks (1D-CNN), multilayer per-
ceptron (MLP), gradient-boosting decision trees (XGBoost
and LightGBM), and random forest (RF). We use PyTorch to
train 1D-CNN; scikit-learn to train MLP, RF, and SVM; and
XGBoost and LightGBM to train GBDT. The one-versus-one
AUC score is reported in Table A1.

We note that, although it does not output AUC as a met-
ric, the performance of nonlinear SVM falls short as com-
pared with LightGBM for other metrics.

TABLE A1. A performance comparison of different machine
learning algorithms. The boldface type indicates that LightGBM
has the best performance of the five algorithms.

Algorithm AUC

1D-CNN 0.7586
MLP 0.8431
LightGBM 0.9378
XGBoost 0.9370
RF 0.9345
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APPENDIX B

10-Fold Cross Validation

When evaluating the performance of LightGBM, we divide
the training data randomly into 10 stratified folds, with each
fold containing 3000 rain events, 3000 snow events, 250 freezing-
rain events, and 130 ice-pellet events. Then, we use nine folds to
train the algorithm and one fold to validate the performance.
After repeating the procedure 10 times, we take the average
of the performance metrics in each fold and obtain the val-
ues shown in Fig. 3. This strategy is implemented using the
StratifiedKFold class in scikit-learn.

APPENDIX C

The LightGBM Climatology on 18 ERA5 Data

A similar spatial pattern to Fig. 5d is obtained when we
train and run the algorithm on 18 ERA5 data (Fig. C1). Al-
though many fine-grain spatial variations are lost, the gen-
eral pattern matches the 0.258 climatology well, which lends
confidence in applying the algorithm to climate models at a
similar grid spacing.

FIG. C1. As in Fig. 5d, but with LightGBM trained and run on 18 ERA5 data.
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APPENDIX D

Model-Level and Pressure-Level LightGBM Climatology

Figure D1 shows the comparison between the derived cli-
matology using model-level data and that with pressure-

level data. We argue that the two climatologies look nearly
identical to each other, except for the absence of the topo-
graphical feature in the Black Hills for the model-level
climatology.

FIG. D1. (a) As in Fig. 5a, but without the superimposed stations; (b) The annual mean freezing-rain frequency
obtained by running LightGBM on model-level ERA5 data (NDJFM; 1979–2021) with a precipitation cutoff of
0.25 mm h21; (c) The difference between the derived climatology and observation, namely, (b) 2 (a). (d),(e) As in
Figs. 5d and 5e, respectively.
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nerability. H.-O. Pörtner et al. Eds., Cambridge University
Press, 3056 pp., https://doi.org/10.1017/9781009325844.

Jensen, A. A., C. Weeks, M. Xu, S. Landolt, A. Korolev, M.
Wolde, and S. DiVito, 2023: The prediction of supercooled
large drops by a microphysics and a machine learning model
for the ICICLE field campaign. Wea. Forecasting, 38, 1107–
1124, https://doi.org/10.1175/WAF-D-22-0105.1.

Jeong, D. I., A. J. Cannon, and X. Zhang, 2019: Projected changes
to extreme freezing precipitation and design ice loads over
North America based on a large ensemble of Canadian re-
gional climate model simulations. Nat. Hazards Earth Syst.
Sci., 19, 857–872, https://doi.org/10.5194/nhess-19-857-2019.

Ke, G., Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T. Y. Liu, 2017: LightGBM: A highly efficient gradient boosting
decision tree. NIPS’17: Proc. 31st Int. Conf. on Neural Informa-
tion Processing Systems, Long Beach, CA, Curran Associates
Inc., 3149–3157, https://dl.acm.org/doi/10.5555/3294996.3295074.

Lambert, S. J., and B. K. Hansen, 2011: Simulated changes in the
freezing rain climatology of North America under global
warming using a coupled climate model. Atmos.–Ocean, 49,
289–295, https://doi.org/10.1080/07055900.2011.607492.

Lang, Z., Q. H. Wen, B. Yu, L. Sang, and Y. Wang, 2023: Fore-
cast of winter precipitation type based on machine learning
method. Entropy, 25, 138, https://doi.org/10.3390/e25010138.

Matte, D., J. M. Thériault, and R. Laprise, 2019: Mixed precipitation
occurrences over southern Québec, Canada, under warmer cli-
mate conditions using a regional climate model. Climate Dyn.,
53, 1125–1141, https://doi.org/10.1007/s00382-018-4231-2.

McCray, C. D., J. R. Gyakum, and E. H. Atallah, 2020: Regional
thermodynamic characteristics distinguishing long- and short-
duration freezing rain events over North America. Wea. Fore-
casting, 35, 657–671, https://doi.org/10.1175/WAF-D-19-0179.1.

}}, J. M. Thériault, D. Paquin, and É. Bresson, 2022: Quantify-
ing the impact of precipitation-type algorithm selection on
the representation of freezing rain in an ensemble of regional
climate model simulations. J. Appl. Meteor. Climatol., 61,
1107–1122, https://doi.org/10.1175/JAMC-D-21-0202.1.

O’Gorman, P. A., and J. G. Dwyer, 2018: Using machine learning
to parameterize moist convection: Potential for modeling of cli-
mate, climate change, and extreme events. J. Adv. Model. Earth
Syst., 10, 2548–2563, https://doi.org/10.1029/2018MS001351.

Owens, R., and T. Hewson, 2018: ECMWF forecast user guide.
ECMWF, https://doi.org/10.21957/m1cs7h.
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