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1 Capacity factors
1.1 Solar
We derive hourly solar capacity factors for a EFG-Polycrystalline silicon photovoltaic module as[1]:

CF t
pv = P t

R

RSDSt

RSDSSTC
(A.1)

where RSDSt hourly represents surface downwelling shortwave flux in air [Wm−2] for which we use the
surface solar radiation downwards variable from ERA5, and the superscript t indexes the hour. Though the
variable is referred with short name SSRD in ERA5 datasets, we refer to it as RSDS following the CF conventions
used in climate model intercomparison projects (CMIP) and in various literature. In ERA5 data, this quantity is
captured as hourly energy accumulation with units Jm−2 but we need to calculate power derived from solar
radiation, so we divide hourly accumulation by 3600s to obtain the average power during the hour with units
Wm−2 1. All the metorological variables are discreet in time and space (at the dataset resolution), and the
index t is dropped hereafter for conciseness. In eq.A.1, RSDSSTC refers to RSDS at standard test conditions
and is equal to 1000Wm−2, and P t

R is the hourly performance ratio calculated using

PR = 1 + γ[Tcell − TSTC ] (A.2)
Tcell = c1 + c2TAS + c3RSDS + c4SWS (A.3)

where Tcell is the PV cell temperature, TAS is surface air temperature (2m temperature in ERA5, converted
from K to °C), and SWS is surface wind speed (calculated from 10m u- and v- components of wind from ERA5).
In eq.A.2, γ = −0.005°C−1 and TSTC = 25°C . In eq.A.3, c1 = 4.3°C, c2 = 0.943, c3 = 0.028°Cm2W−1, and
c4 = −1.528°Csm−1 [2].

1.2 Wind
We calculate wind capacity factors using the formulation described in [3] for the composite 1.5 MW IEC class
III turbine with power curves from the System Advisor Model (SAM) [4] as:

CF t
wind = p(W t

100) (A.4)

where p is a function describing the power curve and W t
100 is the hourly corrected 100m wind speed. The

correction accounts for air density and humidity related effects on the wind turbine performance and is carried
out as:

W100 = W100,raw

( ρm
1.225

)1/3
(A.5)

ρm = ρd

(
1 +HUSS

1 + 1.609×HUSS

)
(A.6)

ρd =
PS

R× (TAS + 273.15)
(A.7)

1https://apps.ecmwf.int/codes/grib/param-db/?id=169
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Eq.A.5 scales the wind speed W100,raw for air density as this affects the force exerted on the turbine blades,
where ρm is the humidity corrected air density, which is in turn derived from the surface specific humidity
(HUSS) as shown in eq.A.6. ρd is the dry air density which is derived using the ideal gas law from surface
pressure [units-Pa](PS) and surface temperature (TAS) as shown in eq.A.7, where R = 287.058Jkg−1K−1

is the gas constant. W100,raw is calculated from the 100m u- and v- components of wind from ERA5 data. Since
ERA5 doesn’t provide HUSS, we calculate it as (ref.[5]):

HUSS =
0.622× V P

0.01× PS − 0.378× V P
(A.8)

V P = 6.112 exp

(
17.67× TDPS

TDPS + 243.5

)
(A.9)

where V P is the vapor pressure and TDPS is the dewpoint temperature at surface in °C(2m temperature
dewpoint temperature in ERA5, converted from K to °C).

Across WECC, few locations have wind speeds suitable for class I and II wind turbines based on the average
wind speed over 2015-2020 from the ERA5 data (figure A.1).As a result, we estimate wind generation for all
locations across WECC assuming a class-III wind turbine. The power curve from SAM is provided as the
power output at discrete wind speeds (figure A.2), and we convert this into a continuous function through
linear interpolation using the interp1d function from the SciPy package [cite]. We include the discrete power
curve in this SI.

Figure A.1: Classification of geographical locations according to wind speed classes, based on 2015-2020 mean of 100m wind speeds

Figure A.2: Power curve for 1.5 MW IEC class III turbine

2 Capacity Expansion Model
The capacity expansion (CE) model optimizes new capacity investments, operations of new and existing units,
and inter-regional electricity transfers by minimizing total system costs subject to system and unit-level con-
straints. Total system costs equal the sum of the cost of electricity generation of existing and new units and the
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Parameter Definition Unit

PMAX
c Maximum power rating of new unit c MW

PEMAX
cs Maximum energy capacity of new storage unit cs MW

PMAX
l Maximum transmission capacity of line l MW

FOMc Fixed O&M cost of new unit c $/MW/year

OCCc Overnight capital cost of new unit c $/MW

OCCl Overnight capital cost of transmission expansion along line l $/MW

CRFc Capital recovery factor of new unit c $/MW

CRFl Capital recovery factor of new transmission line l $/MW

OCc Operational cost of new unit c $/MWh

V OMc Variable O&M cost of new unit c $/MWh

V OMi Variable O&M cost of existing unit i $/MWh

OCi Operational cost of existing unit i $/MWh

OCc Operational cost of new unit c $/MWh

FCc Fuel cost of new unit c $/MMBtu

FCi Fuel cost of existing unit i $/MMBtu

HRc Heat rate of new unit c MMBtu/MWh

HRi Heat rate of existing unit i MMBtu/MWh

R Discount rate = 0.07 –

LTc Life time of new units c Years

NMAX
c Maximum number of new renewable units c built Whole number

M Planning reserve margin as fraction of peak demand –

Dz,t Total load (or electricity demand) in region z at time t MWh

Dt Total load (or electricity demand) across regions at time t MWh

Table A.1: List of Parameters

cost of new capacity investments. Electricity generation costs equal the sum of fixed operations and mainte-
nance (O&M) costs and variable electricity generation costs, which include fuel costs and variable O&M costs.
The model runs till year 2030 in a 8 year increment to meet the prescribed renewable electricity (RE) penetra-
tion level for the US Western Interconnection (WECC). In each time step, the CE model can add any number of
coal steam with carbon capture and sequestration (CCS), natural gas combined cycle (NGCC), NGCC with CCS,
nuclear, wind, solar generators, battery and long-duration storage units, as well as DAC units and transmission
line capacities.
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2.1 Functional Forms
2.1.1 Parameters and Variables

Parameter Definition Unit

PMAX,WIND
t,z Maximum aggregate wind profile in region z at time t MW

PMAX,SOLAR
t,z Maximum aggregate solar profile in region z at time t MW

Hb,z Maximum hydropower generation in region z and time block b MWh

QMAX
is Maximum charging rate of storage unit is MW

QMAX
cs Maximum charging rate of new storage unit cs MW

FORi,t Forced outage rate of existing unit i at time t –

FORRE
t Forced outage rate of existing wind and solar units at time t –

FORc,t Forced outage rate of new unit c at time t –

RR Renewable generation requirement as a fraction of total WECC-wide demand –

CFcr,t Capacity factor of new renewable unit cr at time t –

Wb Scaling factor from number of representative to total hours in time block b –

XMAX
is Maximum state of charge of existing storage unit is MW

Xo

Initial state of charge as a fraction of maximum state of charge

in each time block for existing and new storage units
–

RLi Maximum ramp rate of existing unit i MW

RLc Maximum ramp rate of new unit c MW

η Round-trip efficiency of storage unit %

ν Transmission losses per unit of electricity transferred between regions %

Table A.1: List of Parameters (Continued)
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Set Definition Index Note

C Set of potential new units c –

Cz Set of potential new units in region z cz Cz ∈ C

Cr Set of potential new renewable units cr Cr ∈ C

Cs Set of potential new storage units cs Cs ∈ C

Csz Set of potential new storage units in region z csz Csz ∈ Cs

Cs′ Set of potential new non-storage units cs′ Cs′ ∈ C

I Set of existing units i –

Iz Set of existing units in region z iz Iz ∈ I

Ir Set of existing renewable units ir Ir ∈ I

Iw Set of existing wind units iw Iw ∈ I

Iwz Set of existing wind units in region z iwz Iwz ∈ Iw

Io Set of existing solar units io Io ∈ I

Ioz Set of existing solar units in region z ioz Ioz ∈ Io

Is Set of existing storage units is Is ∈ I

Isz Set of existing storage units in region z isz Isz ∈ Is

L Set of transmission lines l –

LOUT
z Set of transmission lines flowing out of region z lOUT

z LOUT
z ∈ L

LIN
z Set of transmission lines flowing into region z lINz LIN

z ∈ L

B Set of time blocks b –

T Set of hours t –

Tp Set of peak demand hour tp Tp ∈ T

Z Set of regions in WECC z –

Table A.2: List of Sets

Variable Definition Unit

nc Number of new units built of type c Positive number

nl Total new transmission line capacity investments in line l MW

kcs Charge and discharge capacity built of new storage unit cs MW

ecs State of charge capacity built of new storage unit cs MWh

pi,t Electricity generation (or electricity discharge) from existing unit i at time t MWh

pc,t Electricity generation (or electricity discharge) from new unit c at time t MWh

fl,t Total electricity flow in line l at time t MWh

qis,t Electricity to charge existing storage unit is at time t MWh

qcs,t Electricity to charge new storage unit cs at time t MWh

xis,t State of charge of existing storage unit is at time t MWh

xcs,t State of charge of new storage unit cs at time t MWh

Table A.3: List of Variables
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2.2 Objective Function
The CE model’s objective function minimizes total annual fixed plus variable costs, where fixed costs capture
investment costs in new transmission, electricity generators, and storage, and variable costs capture operational
costs of new and existing generators:

TCCE =

∑
cs′

ncs′ × PMAX
cs′

×
(
FOMcs′ +OCCcs′ × CRFcs′

)
+

[∑
cs

(kcs ×OCCcs)× CRFcs

]

+

[∑
l

nl ×OCCl × CRFl

]
+

∑
b

Wb

∑
tb∈Tb

(∑
c

pc,tb ×OCc +
∑
i

pi,tb ×OCi

) ,

∀b ∈ B, i ∈ I, c ∈ C, cs′ ∈ Cs′ , cs ∈ Cs, l ∈ L (B.10)

where c indexes potential new units, including both non-storage and storage units; cs′ indexes potential new
non-storage units; cs indexes potential new storage units; b indexes time blocks; t indexes time intervals
(hours); i indexes existing units; l indexes potential new transmission lines; nc is number of new unit in-
vestments; nl is total new transmission line capacity investments in line l (MW); PMAX is maximum capacity
of unit (MW); FOM is fixed operation and maintenance (O&M) costs of units ($/MW/year); OCC is overnight
capital cost of new investments ($/MW); CRF is capital recovery factor; k is power rating of new storage units;
W is scaling factor from number of representative to total hours in time block; pc is electricity generation from
new unit c (MWh); pi is electricity generation from existing unit i (MWh); and OC is operational costs of new
or existing units ($/MWh). OC is defined for new and existing generators as:

OCi = V OMi +HRi × FCi ∀i ∈ I, (B.11a)
OCc = V OMc +HRc × FCc ∀c ∈ C (B.11b)

where V OM is variable O&M costs ($/MWh), HR is heat rate (MMBtu/MWh), and FC is fuel cost ($/MMBtu).
CRFc is defined as:

CRFc =
R

1− 1

(1 +R)LTc

∀c ∈ C, (B.12)

where R is discount rate and LT is plant lifetime (years).

2.3 System-level Constraints
The CE model enforces a planning reserve margin, which requires total adjusted capacity to exceed peak annual
demand across WECC:

(1 +M)×Dt ≤

∑
ct∈Ct

PMAX
ct × FORct,t × nct

+
∑
cr∈Cr

PMAX
cr × FORcr,t × ncr × CFcr,t

+
∑
cs∈Cs

FORcs,t × kcs

+
∑

i∈(I−IW−IO)

FORi,t × PMAX
i

+
∑
z

(
PMAX,SOLAR
z,t + PMAX,WIND

z,t

)
× FORRE

t ,

∀t ∈ Tp

(B.13)
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where ct and cr index new thermal and renewable plant types, respectively; iw and io index existing wind
and solar generators, respectively; z indexes regions; M is a fraction of peak demand (equal to 0.13); FOR
is forced outage rate; CF is capacity factor; PMAX,SOLAR is maximum regional generation by existing solar
generators (MWh); PMAX,WIND is maximum regional generation by existing wind generators (MWh); and
Tp indicates the annual peak demand hour. Adjusted capacity here accounts for temperature-dependent forced
outage rates of generators [Table A.7] and hourly capacity factors for wind and solar facilities. Note that this
PRM is enforced across all of WECC rather than on a region-by-region basis.

The CE model also requires supply balance demand at each time step:

Dz,t +
∑

isz∈Isz

qisz ,t +
∑

csz∈Csz

qcsz ,t

+
∑

lOUT
z ∈LOUT

z

flOUT
z ,t

≤

∑
iz∈Iz

piz,t +
∑
cz∈Cz

pcz ,t

+
∑

lINz ∈LIN
z

flINz ,t × ν, ∀z ∈ Z, t ∈ T,
(B.14)

where z indexes zones, l indexes transmission lines, isz indexes existing storage units in region z, csz indexes
new storage units in region z, iz indexes existing units in region z, cz indexes new units in region z, lINz indexes
lines flowing out of region z, lOUT

z indexes transmission lines flowing out of region z, q is the electricity used
to charge storage units (MWh), ν indicates losses for each unit of electricity imported into a region (assumed
to be 5%), and f is electricity flows along transmission lines.

The total electricity flow through a transmission line (fl,t) cannot exceed the line’s initial transmission capacity
(PMAX

l ) plus new capacity investments (nl):

fl,t ≤ PMAX
l + nl, ∀l ∈ L, t ∈ T, (B.15)

where l indexes transmission lines, and fl,t is total electricity flow in line l at time t (MWh).

To examine power systems with increasing renewable penetrations, we constrain wind and solar generation
to be greater than or equal to a percentage of total electricity demand:∑

t,cr

pcr,t +
∑
t,ir

pir,t ≥
∑
t,z

PD
z,t ×RR, ∀t ∈ T, cr ∈ Cr, ir ∈ Ir, z ∈ Z (B.16)

where RR equals the renewables requirement as a fraction of total demand. We enforce this constraint at the
WECC-level.

2.4 Unit-level Constraints
2.4.1 Investment constraints
The CE model places an upper bound on wind and solar investments by grid cell based on the area of each grid
cell and the energy density of wind and solar:

0 ≤ ncr × PMAX
cr ≤ NMAX

cr , ∀cr ∈ Cr (B.17)

where ncr equals investment in new wind or solar plants. Maximum wind and solar investment per grid cell
equals 8.8 and 55.5 GW, respectively, using densities of 0.9 and 5.7 W/m2 [6] and the approximate area of 961
km2 corresponding to a 0.25 Degree latitude x 0.25 Degree longitude grid cell.

2.4.2 Generation constraints
For existing generators, electricity generation is limited by the generators’ capacities:

0 ≤ pi,t ≤ PMAX
i , ∀t ∈ T, i ∈ I (B.18)
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Combined electricity generation by existing wind and solar generators is limited to aggregate wind and solar
generation profiles: ∑

iwz∈Iwz

piwz ,t ≤ PMAX,WIND
z,t , ∀t ∈ T, z ∈ Z, (B.19a)

∑
ioz∈Ioz

pioz ,t ≤ PMAX,SOLAR
z,t , ∀t ∈ T, z ∈ Z, (B.19b)

New generators’ electricity generation cannot exceed their new capacity investments:

0 ≤ pc,t ≤ nc × PMAX
c , ∀t ∈ T, c ∈ C (B.20)

Electricity generation by new renewable generators is also constrained by site-specific capacity factor time-
series:

pcr,t ≤ ncr × PMAX
cr × CFcr,t, ∀t ∈ T, cr ∈ Cr (B.21)

Hydropower generation is constrained based on observed data for each of our weather years. Since we ignore
transmission constraints within each of our five regions, we aggregate hydropower capacity by region, then
limit total hydropower generation by time block:∑

tb∈Tb,ihz∈Ihz

pihz ,tb ≤ Hb,z,∀z ∈ Z, b ∈ B (B.22)

where ihz indexes all hydropower units in region z and Hb,z equals maximum toal hydropower generation in
time block b and region z [2.6.2].

The CE model places an upper bound on upwards changes in electricity generation from one time period to
the next, i.e. in upward ramps, for new and existing units:

pi,tb − pi,tb−1 ≤ RLi, ∀tb > 1, i ∈ I (B.23a)
pc,tb − pc,tb−1 ≤ nc × PMAX

c ×RLc ∀tb > 1, c ∈ C (B.23b)

where RL equals the ramp limit. We only constrain upwards ramps for two reasons: (1) downward ramps
can be more easily achieved through curtailment of renewables than upwards ramps and (2) for computational
tractability. Ramping constraints for new and existing generators are enforced between time periods within
each time block, but not between time blocks.

2.4.3 Storage constraints
The energy capacity of storage built of (ecs ) is constrained to a fixed energy to power ratio (PEMAX

cs /PMAX
cs )

times invested power capacity:

0 ≤ ecs ≤
PEMAX
cs

PMAX
cs

kcs , ∀cs ∈ Cs (B.24)

For storage units (is, cs), state of charge (SOC) (x (MWh)) depends on the prior period’s state of charge, electric-
ity discharge (p (MWh)), and energy inflow (or charging) (q (MWh)) while accounting for round-trip efficiency
(η) losses:

0 ≤ xis,t = xis,t−1 − 1/
√
η × pis,t +

√
η × qis,t ≤ XMAX

is , ∀t > 1, is ∈ Is (B.25a)
0 ≤ xcs,t = xcs,t−1 − 1/

√
η × pcs,t +

√
η × qcs,t ≤ ecs , ∀t > 1, cs ∈ Cs (B.25b)

We assume 81% round-trip efficiency for all storage units.
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In hour 1, the state of charge is assume to equal to a fixed fraction (Xo) of the maximum state of charge:

xis,t=1 = X0 ×XMAX
is , ∀is ∈ Is (B.26a)

xcs,t=1 = X0 × ecs , ∀cs ∈ Cs, (B.26b)

where X0 is the initial SOC fraction.

Charging and discharging are limited by max discharge and charge rates, which for new generators are decision
variables noted above, and must be greater than zero:

pis,t ≤ PMAX
is , ∀is ∈ Is, t ∈ T (B.27a)

pcs,t ≤ kis , ∀cs ∈ Cs, t ∈ T (B.27b)
0 ≤ qis,t ≤ QMAX

is , ∀is ∈ Is, t ∈ T (B.27c)
0 ≤ qcs,t ≤ kis , ∀cs ∈ Cs, t ∈ T (B.27d)

where QMAX
is

equals the maximum charging rate of storage assets, which we set equal to PMAX
is

.

Discharging cannot exceed the prior period’s state of charge:

pis,t ≤ xis,t−1 ∀is ∈ Is, t > 1 (B.28a)
pcs,t ≤ xcs,t−1 ∀cs ∈ Cs, t > 1 (B.28b)

2.5 Model Solutions
The CE model solution determines new investments in generators, storage, and transmission assets by region
or (in the case of wind and solar) grid cell; hourly electricity generation of new and existing units; hourly
discharging, charging and states of charge of storage units; and electricity flows between regions. These so-
lutions result from solving the optimization model described above with objective function B.10 subject to all
constraints listed above [B.13,B.14,B.16,B.17,B.18,B.19,B.20,B.21,B.22,B.23a,B.24,B.25,B.26,B.27,B.28].

2.6 Data
In this section, we discuss the data and intermediate steps to calculate the parameters that are used in the
model.

2.6.1 Regional Demand for Electricity
The sub-regional loads are constructed by aggregating loads in smaller balancing authorities located within
their boundaries. Table

Sub-region Balancing Authorities aggregated to find demand
CAMX CISO, BANC, TIDC, LDWP
Desert Southwest IID, AZPS, SRP, EPE, PNM, TEPC, WALC
NWPP Central NEVP, PACE, IPCO, PSCO
NWPP NE WACM, NWMT, WAUW, PACE
NWPP NW PSEI, DOPD, CHPD, AVA, TPWR, GCPD, BPAT, PGE, PACW, SCL

Table A.4: Sub-region – balancing authority mapping to obtain aggregate demand

2.6.2 Generator Fleet
Initial Generator Fleet To construct our 2020 initial representative existing generator fleet, we begin with
unit-level data on active existing units from The National Electric Energy Data System (NEEDS) dataset version
6 (updated in June 2020) (accessed 10/02/2021) [7]. Because NEEDS lacks storage unit parameters and other
parameters need in our CE model, we merge the NEEDS dataset with EIA860 dataset [8] and add carbon dioxide
(CO2) emission rates from the the U.S. Energy Information Administration (EIA)’s Carbon Dioxide Emissions
Coefficients [9], fuel prices from EIA’s Annual Energy Outlook 2020, Table 3. Energy Prices by Sector and Source
[10], and variable operation and maintenance (O&M) costs from [11]. We isolate generators within WECC,
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our study region, using shape files of balancing areas within WECC from NREL’s ReEDS model [12]. Our
initial generator fleet is described in the table A.5. The other type of generators in the table below include
geothermal, different types of waste, biomass, and other small fossil generators, which are all modeled as
dispatchable capacity in the CEM and RAM.

Sub-region Combined cycle
gas

Simple cycle
gas Hydro Nuclear Steam turbine

coal Solar Storage Wind Other

CAMX 20641 10825 10147 0 17 10644 3660 5764 4010
Desert Southwest 11256 4855 3840 3937 5333 2303 287 1488 363
NWPP Central 10486 5053 954 0 6693 3128 670 3636 1045
NWPP NE 94 465 3493 0 6562 40 0 2906 23
NWPP NW 6619 1669 32091 1180 0 356 364 6568 557

Table A.5: Initial generator fleet capacity of each generator type (in MW) across the subregions

Hydropower Generation In the CEM, we dispatch hydropower generation on a regional hourly basis as an
energy-limited resource [ref eq. B.22]. Energy limits are defined for each time block using historic, weather-
year-specific generation from Form EIA-923. We estimate monthly historic generation for each weather year
by matching hydropower ORIS plant codes between our initial generator fleet and Form EIA-923. We then
convert monthly generation to a total energy budget for each time block modeled in the CEM (4 representative
blocks per season and 1 day for peak annual demand, net demand, and 1-hour upward ramp). This conversion
happens in two steps. First, we divide monthly to hourly hydropower generation budgets using the proportion
of monthly to hourly net demand. In some cases, this results in hours with generation exceeding regional
hydropower capacity. For these hours, we iteratively reallocate surplus hourly generation to other hours us-
ing the proportion of monthly to hourly net demand, until regional hydropower generation does not exceed
regional capacity in any hour. Finally, we sum hourly hydropower generation for all hours included in each
time block.
Generator Fleet Compression Because the existing generation fleet in WECC is large with over 4,500
units, we combine (or aggregate) existing small generators into larger generators for computational tractability.
We aggregate generators within the same region using two steps and several criteria. First, for each fuel
type and plant type with zero marginal costs, we aggregate all generators into a single generator by region.
Zero marginal cost generators include all geothermal, wind, solar, landfill gas, municipal solid waste, biomass,
and non-fossil waste generators. Second, for each fuel type and plant type with non-zero marginal costs,
we aggregate generators based on age and heat rate to preserve heterogeneity in operational costs. These
non-zero marginal cost units include distillate fuel oil, natural gas combined cycle, natural gas combustion
turbine, residual fuel oil, and coal (including bituminous, sub-bituminous, and lignite) generators. Specifically,
by region, plant type, and fuel type, we divide generators into 4 heat rate blocks, then aggregate generators
together within each heat rate block by decade between 1975 and 2026. We aggregate generators up to 200 MW
in size in this manner, and create combined generators of up to 10,000 MW. These size thresholds significantly
reduce the size of the generator fleet while still individually modeling mid- to large-sized power plants. Heat
rates and CO2 emission rates of the aggregated generators equal the capacity-weighted heat rates and CO2
emission rates of their constituent generators.

2.6.3 Generator Investment Options
The CE model determines generator additions of three plant types: wind, solar PV, and 4-hour utility-scale
battery storage. We obtain overnight capital costs and fixed and variable operation and maintenance (O&M)
costs from NREL’s Annual Technology Baseline (ATB) moderate technology development scenario for 2030
[11]. For computational tractability, we remove the lowest 40% of possible wind and solar investment locations
in each region (i.e., grid cells) based on average annual capacity factor prior to running our CEM, leaving us
with roughly 3,000 wind & solar locations across WECC.

2.6.4 System Topology
Our resource adequacy (RA) model uses the five regions that WECC uses to quantify resource adequacy in
WECC [13]: NWPP NW, NWPP NE, CAMX, Desert Southwest, and NWPP Central [see figure A.3]. To align
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regions between the CE and RA models, we model these same five regions in our CE model.

Within each of these regions, we ignore transmission constraints. Between regions, we enforce transmission
constraints. Given the lack of data regarding transmission constraints between our WECC resource adequacy
regions, we estimate inter-regional transmission constraints using data from the National Renewable Energy
Laboratory (NREL) Regional Energy Deployment System (ReEDS) model. ReEDS provides transmission con-
straints between 35 balancing areas across WECC. We assign each balancing area to a region using spatial
overlays, then set transmission constraints between each pair of regions as the sum of transmission constraints
between each pair of balancing areas within each region. Using this method, we identify seven inter-regional,
bi-directional transmission constraints. For each of these seven inter-regional transmission constraints, we
limit hourly inter-regional electricity transfers to an upper capacity bound.

In addition to enforcing existing transmission constraints, the CE model can also invest in new transmission
capacity between each of the seven inter-regional transmission interfaces identified above. Similar to other
macro-scale planning models [14], we assume costs scale linearly with new transmission capacity, allowing us
to maintain a computationally tractable linear program (LP). Per-MW costs of transmission expansion equal
the distance (in miles) between the two centroids of interconnected regions times the per MW-mile cost of each
bi-directional transmission line. We estimate this cost as the median of costs between each pair of balancing
authorities between regions, which is taken from NREL’s ReEDS Model’s open access github [12]. Table A.6
depicts all possible combinations of aggregate links between our five load regions and their respective aggregate
capacities and total cost per MW.

2.7 WECC subregions

Figure A.3: WECC subregions used in the CEM and RAM. Arrows show transmission flows between the subregions.

Transmission Capacity between Total Capacity (GW) Expansion Cost (1000$/MW)
NWPP-NW and NWPP-NE 12.3 474
NWPP-NW and CAMX 7.1 1,018
NWPP-NW and NWPP-Central 1.5 569
NWPP-NE and NWPP-Central 6.0 431
CAMX and Desert Southwest 3.0 1,070
CAMX and NWPP-Central 4.6 816
Desert Southwest and NWPP-Central 5.6 348

Table A.6: Transmission Networks within WECC

2.8 Model Code and Data Availability
CEM code and data are available at https://github.com/atpham88/US-CE.
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3 Resource adeqacy model
3.1 Transmission between sub-regions
The transmission energy balance between the WECC subregions is modelled as a simple network flow problem
without accounting for direction of flow in the circuit. For each iteration and each hour where there is a deficit
in any sub-region, this flow problem is solved as a linear program.

3.1.1 Objective
The objective is to minimize the cost of transmission flow and cost of energy not served.

min
f,ens

∑
i

[Tc × (
∑
j,j ̸=i

fij) + ENSc × ei]

∀ i, j ∈ [1, N ]

(C.29)

Where N is the number of sub-regions (henceforth referred to as nodes), fij is the unidirectional flow from
node i to j, and ei is energy not served or energy deficit at each node, Tc and ENSc are the line transmission
and energy not served cost (both $/MWh).

3.1.2 Constraints

∑
j,j ̸=i

(fij − fji)− ei ≤ Ri ∀ i ∈ [1, N ]

0 ≤ fij ≤ Fij , ei ≥ 0 ∀ i, j ∈ [1, N ]

(C.30)

where Ri ∈ R is the residual or net load in each node and Fij is the flow limits on each transmission line. When
the residual is positive the node can export and when the residual is negative the transfers into the region is
positive or there is unserved energy.

3.2 RAM iteration convergence
Figure A.4 provides the LOLH, EUE, and simulation time across 25 simulations for 250 and 500 Monte Carlo
iterations for the weather year 2017 and 45% RE penetration scenario. As the iteration size increases, the
distribution of LOLH estimates tightens. Increasing iterations results in narrowing of the LOLH distribution,
with similar range in EUE, but increases computation time by more than 3x. For other weather years and
RE scenarios, the simulation times is much higher, for instance, with RE=45% and 2019 weather year, this
simulation takes around 4 hours to complete. Since we are more interested in the timing of the risk hours and
not amount of risk throughout our analysis, this variation in LOLH does not impact our findings.

3.3 Forced outage rate
Table A.7 shows the outage probabilities of the various generators as a function of ambient temperature.

Table A.7: Temperature dependent forced outage rates of different generators

Closest temperature
value [◦C] -15 -10 -5 0 5 10 15 20 25 30 35

Nuclear 1.9 % 1.8 % 1.7 % 1.8 % 1.9 % 2.1 % 2.7 % 3.1 % 3.9 % 6.6 % 12.4 %
Combined cycle gas 14.9 % 8.1 % 4.8 % 3.3 % 2.7 % 2.5 % 2.8 % 3.5 % 3.5 % 4.1 % 7.2 %
Simple cycle gas 19.9 % 9.9 % 5.1 % 3.1 % 2.4 % 2.2 % 2.4 % 2.7 % 3.1 % 3.9 % 6.6 %
Steam turbine coal 13.3 % 11.2 % 9.9 % 9.1 % 8.6 % 8.3 % 8.4 % 8.6 % 9.4 % 11.4 % 14. %
Hydro 7 % 4.3 % 3.2 % 2.7 % 2.6 % 2.6 % 2.7 % 2.7 % 2.5 % 2.9 % 8.2 %
Solar, wind,
storage, other 5 % 5 % 5 % 5 % 5 % 5 % 5 % 5 % 5 % 5 % 5 %
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Figure A.4: Variation in range of LOLH with increasing number of Monte Carlo samples

4 Self organizing maps and Weather Patterns
To test the sensitivity of the SOM technique to grid size and training iterations for identifying weather regimes
(WR), we use the metrics quantization error (QE) and topographic error (TE) [15]. QE represents the variance
within the SOM node and is calculated as the L2 error between the daily circulation maps assigned to a node
and the node centroid. TE represents the continuity in the map. TE is calculated by finding the fraction of
inputs for which the best matching node (the node it is assigned to) and the second best matching node are not
neighboring WRs. So, we want to minimize QE to make the node centroid (weather pattern for our purposes)
more representative of the maps assigned to it and minimize TE to ensure the map nodes are topologically
continuous. Figure A.5a shows how QE and TE vary for different grid shapes used to train the SOM. We find
that a 3x3 grid produces a map that best balances QE and TE. Figure A.5b shows the sensitivity of QE and TE
to training iterations. We find 1000 or 5000 iterations is optimal to minimize both QE and TE. Though 1000
iterations does marginally better in comparison to 5000 iterations, we get more stable maps when retraining
using 5000 iterations, hence use that to obtain our weather patters.
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(a) (b)

Figure A.5: Quantization and topographic error for different (a) grid shapes of the SOM (row x columns) (b) training iterations

Figure A.6: Weather patterns representing the weather regimes with the titles for each panel indicating the number of extended
summer days from June-September from 1981-2020 that fall into each weather regime
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Figure A.7: Grey dots show the percentage of extended summer days from 1981 - 2020 belonging to each weather regime. Red
(negative slope) and blue (positive slope) dotted lines show a linear regression if the trend is greater than or equal to —0.05— and bold

parenthesized text indicates a 95% statistical significance of regression coefficient

5 Results SI

Figure A.8: For the 2019 weather year this figure shows installed capacities of different generation sources in the subregios with
increasing renewable penetrations.
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(a) (b)

Figure A.9: (a) Installed capacity of different generation assets across the weather years with at 60% RE penetration; (b) Max LOLP
(top) and number of risk hours (bottom) across the weather years with increasing RE generation levels;

Figure A.10: LOLH and EUE across the weather years with increasing RE generation levels
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(A)

(B) (C)

Figure A.11: Composites of surface temperature (A), surface solar radiation (B), and 100m wind speeds (C) anomalies. The
composites are constructed based on the hours from 2016 extended summer belonging to each weather regime.
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(A)

(B) (C)

Figure A.12: Composites of surface temperature (A), surface solar radiation (B), and 100m wind speeds (C) anomalies. The
composites are constructed based on the hours from 2017 extended summer belonging to each weather regime.
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(A)

(B) (C)

Figure A.13: Composites of surface temperature (A), surface solar radiation (B), and 100m wind speeds (C) anomalies. The
composites are constructed based on the hours from 2018 extended summer belonging to each weather regime.
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Figure A.14: Daily surface solar radiation anomalies on days with RA failure events for RE penetrations from 30% to 60% across the
weather years.
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Figure A.15: Daily 100m wind speeds anomalies on days with RA failure events for RE penetrations from 30% to 60% across the
weather years.

Figure A.16: Daily Z500 anomaly on August 14th and 15th 2020 (Top panels) and WPs 8 and 9 from the extended summer weather
regimes (Bottom panels).
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