
1.  Main
With ongoing climate change and the certainty of additional near-term warming, adaptation to climate change 
is now a necessity for many regions. But despite the importance of adaptation decisions to manage present and 
future climate risks, the large range of future projections can be paralyzing for stakeholders. From a climate 
system perspective, this uncertainty originates from three sources: scenario uncertainty, response uncertainty, 
and internal variability (Hawkins & Sutton, 2009). While internal variability is largely unpredictable and thus 
irreducible on decadal time scales and beyond (Deser et al., 2012), scenario and response uncertainty originate 
from our limited understanding of socio-economic and climate dynamics and are, in principle, reducible.

Over the last two decades, neither the magnitude of scenario nor response uncertainty have changed much. In 
fact, estimates of each increased slightly from the 5th to 6th IPCC Assessment Reports (IPCC, 2021). AR6 uses 
a larger number and wider range of socio-economic scenarios to reflect the full potential for new technology and 
policy to affect future emissions (Moss et al., 2010), constituting a more robust testbed for science (Tebaldi & 
Arblaster, 2014). Response uncertainty, on the other hand, reflects our imperfect understanding of the climate 
system and ability to represent it numerically in climate models; the global temperature range spanned by such 
models increased with the latest generation (the 6th Coupled Model Intercomparison Project, or CMIP6), mostly 
due to stronger positive cloud feedbacks in some models (Zelinka et al., 2020).

Both of these sources of uncertainty have received scrutiny in recent years. Experts argue that high emissions 
scenarios are less probable given that, among other reasons, the expansion rate of renewables is outpacing projec-
tions from a decade ago when these emissions scenarios were developed (Hausfather & Peters, 2020). The high 
sensitivity climate models that have increased estimates of response uncertainty from CMIP6 are likely incon-
sistent with observed warming (Tokarska et al., 2020) and paleoclimate evidence (Tierney et al., 2020). The latter 
concern was addressed in the IPCC AR6, where constrained global temperature projections with a narrower 
“assessed” range were presented in addition to the unconstrained model projections. Thus, it is timely to take 
stock of current climate projection uncertainty, especially for mid-century and at regional scales, which are 
important for adaptation decisions.

Two new research avenues that build on these discussions enable us to take the next step in constraining climate 
projections. First, there is increasing evidence that the set of emissions scenarios can be probabilistically 
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constrained within the range of scenarios used for climate modeling that do not have probabilities associated with 
them (Representative Concentration Pathways, RCPs, and Shared Socioeconomic Pathways, SSPs). These limits 
are emerging both from the developing policy, institutional, technical, and economic landscape, as well as work 
to structurally model the coupled climate-social-political system in order to probabilistically project these trends 
forward (Beckage et al., 2018, 2022; Moore et al., 2022; Otto et al., 2020). Moore et al. (2022) developed a model 
in which climate policy emerges endogenously within the coupled climate-social system, partially constraining 
this using historical trends in public opinion and climate policy ambition and find a more constrained range of 
plausible temperature outcomes than based on the full range of RCP-SSP scenarios. Second, there are new phys-
ically based constraints on global and regional climate response uncertainty (Brunner, McSweeney, et al., 2020; 
Lehner et al., 2019; Lorenz et al., 2018; Qasmi & Ribes, 2022). For example, drawing on the often strong rela-
tionship between changes in global and local temperature and existing constraints on global temperature, Qasmi 
and Ribes (2022) developed constrained grid-cell level temperature projections using CMIP6 models.

Here we combine these two recent advances in understanding of socio-economic dynamics and climate system 
response to create constrained global and regional projections of temperature with the goal of illustrating the 
current potential to better inform climate adaptation decisions at mid-century and beyond. Specifically, we scale 
existing scenario uncertainty based on CMIP6 multi-model means (as calculated in Lehner et  al.  (2020)) to 
span a range of 1.4°C–3.6°C global warming at 2100, following Moore et al. (2022) for constraints on the upper 
bound of the scenario uncertainty. This is equivalent to strongly down-weighting the probability of the high emis-
sions scenarios SSP3-7.0 and SSP5-8.5, in line with other recent assessments of the probability of those emis-
sions scenarios (Hausfather & Moore, 2022; Meinshausen et al., 2022; Srikrishnan, Guan, et al., 2022). Notably, 
currently implemented mitigation policies are projected to lead to a warming range of 2.2°C–3.5°C by 2100 
(IPCC, 2022), that is, a lower upper bound than used here. We then combine the constrained scenario uncertainty 
with the constrained gridded temperature projections from Qasmi and Ribes (2022), which themselves reduce 
both the absolute warming (by about 15% for global temperature under SSP5-8.5) as well as the range of warming 
(by about 40%–50%). There is a small additional reduction of the range of warming due to the interaction of the 
constrained scenario uncertainty with the constrained response uncertainty (Yip et al., 2011). Projection uncer-
tainty for global temperature is reduced substantially when combining these different constraints (Table 1). For 
example, the 5%–95% range of decadal mean global temperature in 2050 shrinks from 1.3–3.4°C to 1.4–2.5°C, 
with even stronger constraints later this century.

As shown by Qasmi and Ribes (2022), the constraints on global temperature response are substantial enough to 
warrant carrying them through to the regional scale, where response uncertainty is known to often be important 
(Hawkins & Sutton, 2009, 2011; Lehner et al., 2020). Further combining regional constraints with the reduced 
scenario uncertainty can yield significant decreases in projection uncertainty through lowering the upper bound 
and raising the lower bound of the range (Figures 1a and 1b). For example, total uncertainty in temperature 
projections over Central Europe for 2050 is reduced by ∼50%, with the relative importance of response uncer-
tainty decreasing from 44% to 30% and scenario uncertainty decreasing from 46% to 39% (Figures 1a and 1b). 
Consequently, internal variability becomes relatively more important, increasing from 10% to 31%, providing 
renewed motivation for decadal prediction efforts that aim to reduce uncertainty from internal variability on 
regional scales (Mahmood et  al.,  2022). Overall, this uncertainty reduction is roughly equivalent to waiting 
another ∼15 years, that is, moving the reference period to 2016–2035 (from 2001 to 2020) for the unconstrained 
CMIP6 ensemble.

Due to the dependence of other variables on decadal mean annual temperature, secondary constraints are possible. 
For example, changes in summer (June–August) temperatures over Central Europe are strongly correlated with 
changes in the annual mean, such that their plausible range in 2050 can also be reduced substantially by project-
ing the constrained annual temperature, the predictor, onto summer temperature, the predictand (Figure  1c). 
We use York regression (York et al., 2004) to account for internal variability correlation between predictor and 
predictand, using each model's preindustrial control simulation to establish the correlation. The regression coef-
ficients, their uncertainty, and the constrained range of annual temperature are then sampled 1,000 times to 
predict a constrained distribution of summer temperature change. With both scenario and response uncertainty 
constrained, it is very likely that the Central Europe decadal mean summer warming will stay below ∼2.5°C 
compared to 2001–2020 (∼4°C compared to preindustrial). However, the average summer in the decade centered 
on 2050 is still projected to be about as warm as the observed 2022 summer, Central Europe's hottest summer on 
record, which saw increased human mortality and damaging effects on agriculture (https://www.worldweather-

Validation: Ed Hawkins, Rowan Sutton, 
Angeline G. Pendergrass
Visualization: Flavio Lehner
Writing – original draft: Flavio Lehner
Writing – review & editing: Ed 
Hawkins, Rowan Sutton, Angeline G. 
Pendergrass, Frances C. Moore

 2576604x, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023A

V
000887 by E

th Z
ürich E

th-B
ibliothek, W

iley O
nline L

ibrary on [18/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.worldweatherattribution.org/wp-content/uploads/WCE-NH-drought-scientific-report.pdf


AGU Advances

LEHNER ET AL.

10.1029/2023AV000887

3 of 6

attribution.org/wp-content/uploads/WCE-NH-drought-scientific-report.pdf 
(accessed 20th June 2023)).

The general prospect for uncertainty reduction depends on the variable and 
spatial scales considered (Hawkins & Sutton, 2009, 2011). There are other 
regions and variables with strong links to global and local temperature and 
thus the potential for constrained projection uncertainty, for example,: mean, 
extreme, and variability of precipitation in regions where the change signal 
is dominated by thermodynamics, such as at high latitudes (Pendergrass 
et al., 2017); changes in temperature extremes (Seneviratne et al., 2016), and 
in Arctic sea ice area (Bonan et  al.,  2021). Caution is certainly warranted 
when developing such regional constraints, as their robustness can be diffi-
cult to establish (Caldwell et al., 2014), model interdependency can jeopard-
ize statistical inference (Sanderson et al., 2015), and scenario composition 
can lead to departures from linear temperature scaling, for example, due to 

aerosols (Deser et  al.,  2020; Lehner & Coats,  2021; Pendergrass et  al.,  2019). The latter point is of particu-
lar concern, since the current portfolio of emissions scenarios does not sample spatially heterogenous aerosol 
trajectories in a systematic way (Persad et al., 2022; Rogelj et al., 2014). Based on existing studies, we estimate 
that regional projection uncertainty as presented here could be enlarged by 10%–20% via aerosol storylines not 
covered by the SSP scenarios (Persad & Caldeira, 2018; Westervelt et al., 2020); a new Model Intercomparison 
Project will help to better quantify this uncertainty, especially for the hydrologic cycle (Wilcox et al., 2022). 
There are also remaining uncertainties in the climate carbon cycle feedback that could lead to high forcing with-
out high anthropogenic emissions (Arora et al., 2020). Equally, geopolitical changes remain difficult to predict 
and could slow or speed up momentum toward Net Zero (Sanderson & Knutti,  2017). Various international 

Global mean surface temperature change

Mid-term 
2046–2055 

5%–95% 
range (°C)

Long-term 
2090–2099 
5%–95% 

range (°C)

Unconstrained 1.3–3.4 1.1–7.1

Scenario uncertainty constrained 1.3–3.1 1.1–4.8

Response uncertainty constrained 1.4–2.8 1.2–5.8

Scenario and response uncertainty constrained 1.4–2.5 1.2–4.0

Table 1 
Very Likely (5%–95%) Range of Decadal Global Mean Temperature Change 
Around 2050 and 2095, Based on Unconstrained and Constrained CMIP6 
Simulations, Relative to the 1850–1900 Mean

Figure 1.  Reduced uncertainty in regional climate projections. (a) Decadal mean annual temperature over Central Europe from the unconstrained CMIP6 multi-model 
mean (15 models) under SSP5-8.5 and SSP1-1.9. Constrained versions of those scenarios are given in dotted-dashed lines. The 5%–95% range for the unconstrained 
(constrained) projections is given in light (dark) shading. Observations from Berkeley Earth (Rohde et al., 2013) are given as annual values and a 10-year running mean. 
Data is relative to (left y-axis) 2001–2020 and (right y-axis) 1850–1900. (b) Temperature ranges for the decade of 2046–2055 from unconstrained, partly constrained, 
and fully constrained projections. Pie charts give the relative importance of different sources of uncertainty relative to 2001–2020. (c) Decadal mean annual versus 
summer temperature from individual models and scenarios. Normalized PDFs for unconstrained and constrained summer temperatures are given together with 5%–95% 
range horizontal bars.
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bodies continue to highlight the gaps between climate ambitions and existing and promised policies on emission 
reductions (UNEP, 2022). Thus, to more robustly assess projection uncertainty, there is a need to develop compu-
tationally nimble climate model emulators and climate-social models that are however able to simulate complex 
non-linear interactions resulting from spatio-temporally heterogenous forcing scenarios (Beusch et  al.,  2022; 
Srikrishnan, Lafferty, et al., 2022). This includes refined uncertainty estimates not just of climate forcing and 
response, but also feedbacks between climate change impacts and economic activity (e.g., Dall’Erba et al., 2021).

Notwithstanding the above caveats, we believe that the current progress in constraining CMIP6-based climate 
projection uncertainty is worth exploring, communicating, and deploying more widely in context of impact 
assessments and adaptation. Climate information at decision-relevant time and spatial scales is urgently needed 
by those tasked with managing climate risks in the public and private sector (Condon, 2023; Fiedler et al., 2021; 
Sobel, 2021). These needs will best be served by integrating available information on both scenario and response 
uncertainty as they evolve. This need not lead to overconfidence, as perfect model tests (Brunner, Pendergrass, 
et al., 2020) and emergent constraint protocols (Hall et al., 2019) can help guard against that. We also encourage 
continued use of high impact-low likelihood scenarios (such as SSP5-8.5) in risk assessments that do seek to 
explore those (Lawrence et al., 2020) or that already apply algorithms of robust decision making to develop adap-
tation strategies for a wide range of plausible but perhaps unlikely futures (Lempert, 2019; Smith et al., 2022). 
In fact, physical climate scientists will continue to be interested in running climate models with high emissions 
scenarios, as they provide a large signal-to-noise ratio, which aids process understanding and provides training 
grounds for emulators. Rather, constrained climate projections demonstrate real progress in the understanding 
of likely futures that can support climate adaptation planning in cases where large uncertainty has previously 
hindered progress.
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