
1. Introduction
Understanding spring plant phenology is essential as it modulates ecosystem functions, the terrestrial carbon 
cycle, and land-atmosphere coupling (Morisette et al., 2009; Renner & Zohner, 2018; Richardson et al., 2013). In 
temperate and boreal regions, plant phenology modifies the terrestrial carbon cycle by governing growing season 
onset and duration (Morisette et al., 2009; Richardson et al., 2009, 2010). In addition, plant phenophase changes 
regulate land-atmosphere energy and momentum exchanges (Richardson et  al.,  2013; Schwartz,  1992), and 
therefore influence land-atmosphere coupling strength, as demonstrated by both observations (Berg et al., 2016; 
Findell et al., 2015; Green et al., 2017) and model experiments (Guillevic et al., 2002; Levis & Bonan, 2004; Li, 
Ault, Richardson, et al., 2023; Lorenz et al., 2013; Puma et al., 2013; Xu et al., 2020). Human-induced changes 
in temperature and precipitation will likely modify plant phenology in the future, which in turn will affect carbon 
sequestration and energy exchanges between the biosphere and the atmosphere (Morisette et al., 2009; Richardson 
et al., 2013). Therefore, understanding and evaluating phenology variabilities at high temporal resolution is crit-
ical for accurate climate projections.

Abstract Plant phenology regulates the carbon cycle and land-atmosphere coupling. Currently, climate 
models often disagree with observations on the seasonal cycle of vegetation growth, partially due to how 
spring onset is measured and simulated. Here we use both thermal and leaf area index (LAI) based indicators to 
characterize spring onset in CMIP6 models. Although the historical timing varies considerably across models, 
most agree that spring has advanced in recent decades and will continue to arrive earlier with future warming. 
Across the Northern Hemisphere for the periods 1950–2014, 1981–2014, and 2015–2099 in the historical 
and SSP5-8.5 simulations, thermal-based indicators estimate spring advances of −0.7 ± 0.2, −1.4 ± 0.4, 
and −2.4 ± 0.7 days/decade, while LAI-based indicators estimate −0.4 ± 0.3, −0.1 ± 0.3, and −1±1.1 days/
decade. Thereby, LAI-based indicators exhibit weaker trends toward earlier onset, leading to uncertainties from 
different indices being as large or larger than model uncertainty. Reconciling these discrepancies is critical for 
understanding future changes in spring onset.

Plain Language Summary The timing of spring onset as indicated by green-up affects plants, bird 
and insect populations, rivers, and agriculture. However, state-of-the-art land surface models disagree with 
satellite-derived records on the seasonal cycles of vegetation growth, making it difficult to accurately predict 
green-up, its response to climate, and the ecological consequences. Here we calculate two sets of spring onset 
indicators using climate model outputs to characterize spring onset variations and trends in the recent past 
and future. We find spring has been advancing in recent decades and will continue to arrive earlier with future 
warming. Thermal-based indicators show that spring onset advances by −0.7, −1.4, and −2.4 days/decade in 
the Northern Hemisphere during 1950–2014, 1981–2014, and 2015–2099, respectively. This result suggests that 
spring onset today is on average four days earlier than spring onset 30 years ago and this rate will nearly double 
in the future. However, compared to meteorological-based indicators, vegetation growth-based indicators 
exhibit weaker trends toward earlier onset. Therefore, how we define and measure spring onset, as well as the 
models we use to predict changes in the environmental factors, influence future changes in the start of spring.
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Two approaches have been widely adopted to simulate how spring onset responds to climate variability and 
long-term warming. First, indicator models developed from plant phenophase change dates on the ground (e.g., 
bud burst, blooming), like the spring indices, have been extensively used to characterize trends and variability 
of spring onset and identify the influence of abiotic factors (Ault, Zurita-Milla, et al., 2015; Chuine et al., 1998; 
Jolly et al., 2005; Schwartz et al., 2006). Because these indicator models do not modulate meteorological vari-
ables and focus on specific growth stages (e.g., leaf out) instead of carbon allocation during vegetation growth, 
they can be more complex and finely tuned to specific species or plant functional types (PFT) than phenology 
schemes in land surface models (LSMs; Krinner et al., 2005; Milly et al., 2014; Sitch et al., 2003) and require less 
computing resource to calculate. In addition, as they only rely on meteorological variables and can be applied and 
compared uniformly across models, indicator models have been adopted to estimate projected spring onset varia-
bility (Allstadt et al., 2015; Zhu et al., 2019) and used as independent indicators of climate change influences on 
ecosystems (Lindsey & Newman, 1956; Root et al., 2005). However, as temperature increases, the relative impor-
tance of meteorological factors like temperature and soil moisture in regulating spring onset timing and plant 
sensitivity to meteorological factors may change (Flynn & Wolkovich, 2018; Fu et al., 2015; Laube et al., 2014; 
Park et al., 2021; Parmesan, 2007; Renner & Zohner, 2018), increasing uncertainty in how natural and managed 
ecosystems will adapt to climate change.

Simulating plant phenology using LSMs is another approach for predicting phenology changes in the future and 
their influences on the Earth system. State-of-the-art LSMs adopt environmental conditions (i.e., temperature, 
soil moisture, etc.) to simulate plant phenology prognostically (e.g., Krinner et al., 2005; Oleson et al., 2013), 
but large discrepancies are present in both the amplitude of leaf area index (LAI) and land surface phenology 
simulated by climate models and derived from satellite imagery (Li et al., 2022; Mahowald et al., 2016; Park 
& Jeong,  2021; Peano et  al.,  2019,  2021; Richardson et  al.,  2012; Song et  al.,  2021), potentially inducing 
large influences on land surface states including surface temperature (Li et al., 2023; Lorenz et al., 2013; Xu 
et al., 2020). In addition, although plant phenology is often simulated at daily or higher temporal resolution 
in LSMs (Krinner et al., 2005; Oleson et al., 2013; Sitch et al., 2003), model output is often documented at a 
coarser resolution in the history files and therefore most evaluations are based on monthly averages, adding to 
uncertainties and undermining the trends (Park & Jeong, 2021; Peano et al., 2021; Song et al., 2021). Mean-
while, not all climate models simulate plant phenology and the carbon cycle prognostically (e.g., as shown in 
Table S1 in Supporting Information S1, nine out of the 26 models prescribe their leaf phenology from satellite 
data), posing additional uncertainties in future projections of land-atmosphere interactions and terrestrial carbon 
cycles.

Here we adopt both a suite of thermal-based indicators—the extended spring indices models (SI-x; Ault, 
Schwartz, et al., 2015; Ault, Zurita-Milla, et al., 2015; Schwartz et al., 2013)—and plant phenology from the 
Coupled Model Intercomparison Project Phase 6 (CMIP6; Eyring et al., 2016) to characterize the timing and vari-
ation of spring onset in CMIP6 simulations. While both indicators are widely used to infer changes in seasonal 
transitions and plant phenology, they are yet to be compared in the instrumental period and future projections. 
We aim to assess the historical and projected variabilities and uncertainties of spring onset timing in the North-
ern Hemisphere (NH), which play an important role in modulating both the carbon cycle and land-atmosphere 
interactions.

2. Data and Methods
2.1. CMIP6 Models

We obtained daily maximum and minimum surface air temperature and LAI from participating models in the 
CMIP6 ensemble from both historical and SSP5-8.5 scenario simulations (Eyring et al., 2016; O’Neill et al., 2016; 
see Text S1 in Supporting Information S1 for details). To estimate changes in the timing of spring onset under the 
most pessimistic conditions, we adopted the SSP5-8.5 scenario (hereafter SSP585) which estimates a +8.5 W/m 2 
increase in radiative forcing and represents a high-emission, high-end forcing pathway (O’Neill et al., 2016). We 
used 1950–2099 daily maximum and minimum surface air temperature from all 26 models with both historical 
and SSP585 daily temperature data available (Table S1 in Supporting Information S1). Seven models also have 
prognostic carbon cycle and daily LAI available (Table S2 and Text S1 in Supporting Information S1). For models 
with leap years, we removed temperature and LAI data for Feb 29th to form a consistent comparison among 
models. We used bilinear interpolation to adapt all model outputs to a 1° × 1° latitude-longitude resolution.
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2.2. The SI-x Model

The SI-x and their predecessors, the original SI were developed from historical records of lilac and honeysuckle 
phenology, and have been extensively used as proxies for certain groups of species, as well as to assess the impact 
of abiotic changes on spring onset (Ault, Schwartz, et al., 2015; Gerst et al., 2020; Schwartz et al., 2006, 2013). 
SI-x uses daily temperatures and latitude to estimate the timing of spring foliage (first leaf, hereafter SI-x leaf) 
and blooming (first bloom) for plants with temperature-responsive phenology. Here we calculated SI-x leaf for 
all 26 models at 1° × 1° resolution from 1950 to 2099 and the observations from 1950 to 2014 (Berkeley Earth, 
see Text S2 in Supporting Information S1) and 1979–2014 (CPC, Text S2 in Supporting Information S1). More 
details of SI-x and our process can be found in Text S3 in Supporting Information S1.

2.3. LAI Threshold-Based Day of Year (DOY)

We also calculated spring onset indicators based on the DOY LAI reaches pre-defined thresholds of its annual 
dynamical range. The dynamical range of LAI is defined as the difference between minimum (winter) and maxi-
mum (summer) LAI each year. We focused on the 25%, 50%, and 75% thresholds of the annual dynamical 
range of LAI (Figure S1 in Supporting Information S1). Using threshold-based indicators reduces the influence 
of land-use change as well as differences in peak LAI from one year to the next (White et al., 1997). Similar 
methods have been adopted to determine the start of the growing season from monthly records (e.g., Peano 
et al., 2021; Richardson et al., 2012; Song et al., 2021), and with daily LAI we were able to achieve more precise 
timing and compare it with DOY records from thermal-based indicator models. Previous work suggested that the 
50% threshold or the largest derivatives are better indicators of phenological changes (e.g., White et al., 2009), 
and here we focused on the LAI25% indicator as it is close to both the SI-x leaf timing and the 50% threshold 
and because we are interested in the trends and variability of the full possible ranges of spring onset, especially 
the early spring events. We note, however, trends and variabilities are similar among different LAI thresholds 
in the same model. To evaluate simulated LAIs and investigate how the phenology schemes influence model 
performance, we also adopted satellite imagery derived LAIs from the Global LAnd Surface Satellite project 
(GLASS; Liang et al., 2013, 2020) and land cover type data from Moderate Resolution Imaging Spectroradiome-
ter (MODIS; MCD12Q1; Friedl et al., 2010; Figure S2a and Text S2 in Supporting Information S1).

2.4. Statistical Method

We calculated linear trends of the indices over different time windows and used a one-sided 5% significance level 
to evaluate the significance of all analyzed trends. When calculating correlations between the indicators, we first 
removed the linear trend and then calculated correlation coefficients of the detrended time series (Text S4 in Support-
ing Information S1). The significance of the trends and correlations have been adjusted for false discovery by recalcu-
lating the significance level to control the expectation of falsely rejected hypotheses (Benjamini & Hochberg, 1995).

3. Results
3.1. Spring Onset Timing

Spring onset timing has advanced in recent decades in both observations and model simulations and will shift 
earlier under the SSP585 scenario (Figure 1). Over 1950–2014 in the NH, CMIP6 ensemble mean of 26 models 
indicates 117.0 ± 6.0 days to first leaf based on the SI-x models (hereafter CMIP6-leaf), later than SI-x leaf 
calculated from Berkeley Earth (hereafter Obs-Berkeley-leaf, 107.3 ± 2.2 days; Figure S3a in Supporting Infor-
mation S1). Over the historical period, the spread of spring onset timing in CMIP6 encompasses the interan-
nual variability of observation-based SI-x (Figure 1a). Under the SSP585 scenario in 2015–2099, CMIP6-leaf 
advances to 104.5 ± 8.6 days. The largest disagreement of mean onset dates between CMIP6 models is present in 
Western NA, Northern Russia, and over the Tibetan Plateau during the historical period, and this spatial pattern 
persists into the SSP585 period (Figures S4h and S4j in Supporting Information S1).

Models experience considerable differences in simulated plant phenology (Figures S1, S3c, and S3d in Support-
ing Information S1), mean LAI values (Figure S5 in Supporting Information S1), and mean LAI threshold-based 
spring onset timing (Figures S1, S3c, S3d, and S6a in Supporting Information S1). Compared to GLASS LAI, 
ensemble mean overestimates LAI values in Eastern Asia and western Canada and underestimates LAI in 
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Southern Russia (Figure S5 in Supporting Information  S1). Large disagreements exist among the models in 
Canada, Northern Europe, and East Asia. These regions continue experiencing large differences among model 
LAIs in SSP585, along with Eastern US.

The start of spring as indicated by LAI 25% threshold DOYs also advances in the SSP585 scenario but is much 
later in the models than in GLASS LAI in the historical period (Figure S3c in Supporting Information S1). Across 
the NH, mean LAI 25% DOY based on simulated LAIs (hereafter CMIP6-LAI25%) is 137.7  ±  19.7 during 
1981–2014, 20 days later than in GLASS LAI (hereafter Obs-GLASS-LAI25%, 117.9 ± 2.6). CMIP6-LAI25% 
advances to 134.9 ± 24.4 in 2015–2099 in SSP585. The timing varies considerably across models (Figure 1b, 
Figures S3c, S3d, and S6a in Supporting Information S1). The largest disagreement among models is present 
south of 40°N while large differences between CMIP6-LAI25% and Obs-GLASS-LAI25% are also present in 
the Tibetan Plateau, Russia, and Northern Europe. Overall, models estimate later spring onset over high-latitude 
(north of 55°N) and high-elevation regions (Figure S7 in Supporting Information  S1). In addition, in every 
period, CMIP6-LAI25% exhibits larger inter-model variability than CMIP6-leaf (Figure 1c, Figures S4g–S4j 
in Supporting Information S1). Differences between SI-x leaf and LAI25% vary across models and regions but 
overall the discrepancies between indicators increase through time.

Figure 1. Anomalies in the day of year (DOY) spring onset is predicted. (a) Anomalies of the extended spring indices (SI-x) 
first leaf DOYs calculated from the 26 CMIP6 models and the Berkeley Earth (dotted black line) and CPC (solid black 
line) gridded daily temperature datasets averaged across the Northern Hemisphere (NH) (25°–85°N) and adjusted for area 
weight. Day-of-year (DOY) anomalies are calculated by subtracting the 1981–2010 mean of each model/observation. Each 
observational data set’s one standard deviation interval is shown in a gray shade around its mean in panels (a) and (b). (b) 
Anomalies of the leaf area index (LAI) 25% threshold DOYs calculated from the seven CMIP6 models and GLASS (solid 
black line) and MODIS (dotted black line) LAI averaged across the NH (25°–85°N). DOY anomalies are calculated by 
subtracting the 2001–2014 mean of each model/observation and adjusting for area weight. (c) Box plots showing the spread 
of SI-x leaf and LAI25% DOYs derived from CMIP6 models during each decade. For each box plot, the centerline denotes 
the median of the DOYs, box limits show the upper and lower quartiles (25% and 75%), and whiskers indicate the 5% and 
95% values.
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3.2. Trends in the Start of Spring

Long-term trends in the start of spring, as measured by SI-x leaf trends over 1950–2014, exhibit overall agree-
ment between observations and the ensemble mean but vary considerably across models (Figures S8a, S8b, 
and S9 in Supporting Information S1). During 1950–2014 in the NH, the ensemble mean trend of CMIP6-leaf 
is −0.72  ±  0.21  days/decade, whereas the mean Obs-Berkeley-leaf trend is −0.85  days/decade (Figures S8a 
and S8b in Supporting Information S1). The magnitude of these trends increases during the more recent period 
(1981–2014), with CMIP6-leaf mean trend of −1.44 ± 0.4 days/decade, slightly greater than Obs-Berkeley-leaf 
(−1.28 days/decade) and CPC (Obs-CPC-leaf, −1.21 days/decade). During 2015–2099, CMIP6-leaf exhibits an 
ensemble mean trend of −2.39 ± 0.71 days/decade. However, the trends vary considerably across models and 
even among different members of the same model (Figures S8a and S8b in Supporting Information S1).

The spatial pattern of spring advancement exhibits large variations among models and between the ensemble 
mean and observations. Both Obs-Berkeley-leaf and Obs-CPC-leaf exhibit relatively large advancement in the 
Tibetan Plateau, North Russia, and Southern Europe during 1981–2014 (Figure S9 in Supporting Informa-
tion S1), and trends in central and north Asia are statistically significant in Obs-CPC-leaf. This pattern is not 
present in CMIP6-leaf or any individual model-based SI-x leaf. Moreover, models exhibit significant trends 
in very few regions (e.g., Eastern NA and Europe in EC-Earth-3-CC and mid-to-high latitude regions in Asia 
in GFDL-ESM4). The greatest earlier trend in the ensemble mean is in Southern Europe, Eastern US, and the 
eastern and southern parts of the Rocky Mountains (Figures 2b and 2e), but these regions also exhibit large 
disagreements among models (Figures S9 and S10b in Supporting Information S1). When compared to obser-
vations, CMIP6-leaf tends to overestimate spring advancement in NA, particularly Western Canada and Eastern 
US, and underestimate spring advancement in central and north Asia (Figure S11 in Supporting Information S1). 
During 2015–2099, most models exhibit significant earlier spring across the NH (Figures S12b and S13f in 
Supporting Information S1) and the greatest earlier trend is present in regions along the Pacific coast of NA, in 
central NA, Europe, and mid-latitude regions of Asia (Figure 2e). Though models mostly agree that spring is 
starting earlier under the historical and future scenarios (Figures S10b, S12b, S13b, S13d, and S13f in Support-
ing Information S1), large disagreements among models are also present, with ACCESS-CM2, CMCC-ESM2, 
CNRM-CM6-1, CNRM-CM6-1-HR, EC-Earth3-CC, IPSL-CM6A-LR, TaiESM1, and UKESM1-0-LL experi-
encing a much larger earlier trend while FGOALS-g3, KIOST-ESM, MRI-ESM2-0, and NESM3 exhibiting a 
much smaller trend (Figures S9 and S11 in Supporting Information S1). Compared to the historical period, the 
magnitude of the trends and variability of CMIP6-leaf increases in 2015–2099 (Figures 1a and 1c).

Trends of CMIP6-LAI25% vary considerably geographically and across models, but also display an over-
all earlier spring onset and increasing variability over the NH (Figures 1b, 1c,  2a and 2d, Figures S8c, S8d, 
S10a, S12a, S13a, S13c, and S13e in Supporting Information  S1). During 1950–2014, the mean NH trends 

Figure 2. Ensemble mean and differences of spring onset trends. (a, b, d, e) Ensemble mean trends of leaf area index 
25% threshold day of year (CMIP6-LAI25%) and extended spring indices first leaf (CMIP6-leaf) during the historical 
(1950–2014) and SSP585 (2015–2099) periods (unit: day/decade). (c, f) Differences in mean trends between CMIP6-LAI25% 
and CMIP6-leaf. CMIP6-LAI25% trends are based on seven models and CMIP6-leaf trends are averaged across 26 models.
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of CMIP6-LAI25% is −0.41 ± 0.31 day/decade, ∼0.3 day/decade smaller than those indicated by CMIP6-leaf 
(Figure S8 in Supporting Information S1). The largest trends are present along 60°N in Eurasia and Eastern NA, 
though trends vary across models in Southern Europe and south of 40°N. During 1981–2014, trends of both 
CMIP6-LAI25% (−0.05 ± 0.29) and Obs-GLASS-LAI25% (−0.01) are close to 0, likely due to the delayed start 
of spring in areas south of 40°N and Southern Europe (Figures S10a and S12a in Supporting Information S1), 
where soil moisture is the governing factors for plant growth (Figure S2 in Supporting Information S1). Though 
CMIP6-LAI25% mean trends are negative (i.e., spring arrives earlier) in the US, northern Canada, and southern 
Russia and positive in southern Europe, Obs-GLASS-LAI25% trends in these regions are of smaller ampli-
tude, and sometimes in the opposite direction (Figure S10a in Supporting Information S1). The trends change to 
−0.97 ± 1.06 days/decade during 2015–2099 under the SSP585 scenario, ∼1.4 days/decade fewer than trends 
estimated from CMIP6-leaf. Over the 2015–2099 period, the trend is much stronger in mid-to-high latitude 
(north of 45°N) and high-elevation regions (Figure 2d, Figures S12a and S13e in Supporting Information S1). In 
southern Europe and the US, the models diverge in LAI25% responses with large positive trends (delay in spring 
onset) in CMCC-ESM2, negative trends in EC-Earth3-CC, IPSL-CM6A-LR, and MIROC-ES2L, and contrasting 
trends in CNRM-ESM2-1.

Although the timing indicated by LAI25% and SI-x leaf vary across models, variabilities and trends derived 
from the two sets of indicators exhibit relatively good agreement, especially during longer temporal periods 
and in temperature-dominant PFTs (Figures 2c, 2f and Figures S6c, S10c, S10d, S12c, and S12d in Supporting 
Information S1). During 1981–2014, Obs-GLASS-LAI25% exhibits weaker trends in spring onset timing than 
Obs-Berkeley-leaf at higher latitudes (north of 50°N) and stronger trends at low latitudes (south of 30°N). This 
latitudinal pattern is also present in most of the models (except KIOST-ESM) with some variations (Figure S10c 
in Supporting Information S1). Similar agreement of spring onset trends at mid-to-high latitudes are also pres-
ent in the ensemble means based on all available models (Figure 2, Figure S14 in Supporting Information S1). 
Although trends of CMIP6-leaf increase faster than CMIP6-LAI25%, their variabilities are coherent and the 
difference in their trends is still relatively small and spatially uniform at mid-to-high latitudes. Across the NH, 
the spread among different indicators is smaller at higher latitudes with the smallest spread present between 55.5° 
and 84.5°N. However, differences between LAI- and thermal-based indicators increase in the SSP585 scenario 
across different latitudes, and CMIP6-LAI25% can even be delayed at lower latitudes (Figure S12 in Supporting 
Information S1). At mid-to-high latitudes (north of 40°N except southern Europe), both observations and models 
exhibit positive and significant correlations between SI-x leaf and LAI25%, except for ACCESS-ESM1-5 in the 
future scenario and CMCC-ESM2 and KIOST-ESM in some moisture-limited regions (Figures S2, S10d, and 
S12d in Supporting Information S1). Overall, models exhibit an NH mean correlation of 0.47 ± 0.22 during the 
historical period and 0.43 ± 0.23 under SSP585 between the two sets of indicators.

4. Discussion and Conclusion
Our results show good agreement between SI-x leaf calculated from simulated and observed temperatures, but 
considerable differences are present between model-simulated and observed LAI25% and between LAI25% 
and SI-x leaf estimated from models. Our results also confirm the later start of the growing season in models 
presented by previous studies (Li et al., 2022; Park & Jeong, 2021; Peano et al., 2019, 2021; Song et al., 2021). 
Part of the differences can be due to the uncertainties in both the gridded temperature datasets and the remote 
sensing derived LAI estimates we adopted here. For instance, satellite-based LAIs are derived from assumptions 
about land cover type and observed reflectance and therefore may be influenced by scale effects when aggre-
gated to the relatively coarse spatial resolution of climate models (e.g., Liu et al., 2019; Zhang et al., 2017) and 
winter snow cover (e.g., Myneni et al., 2015). However, uncertainties in the observational datasets are relatively 
small compared to the inter-model as well as the between-index uncertainties (Figure 1). Although part of the 
between-index differences may be due to PFTs at lower latitudes where spring onset and vegetation growth are 
limited by both soil moisture and temperature (Table S2 and stress deciduous PFTs in Figure S2b in Supporting 
Information S1), our results show LAI25% exhibits a less negative trend (i.e., a less early start of spring) than SI-x 
leaf at all latitudes, though the indicators are positively correlated (Figure S14 in Supporting Information S1). 
Leaf development in LSMs depends both on spring onset timing and carbon allocation to leaves and experiences 
impacts of both temperature and soil moisture, so LAI threshold-based indicators reflect the combined influ-
ences of biotic and abiotic factors, while SI-x mostly follows environmental impacts. Therefore, SI-x leaf shows 
the full potential range of temperature-induced spring onset variability while LAI25% is more restrained by 
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environmental and biotic factors and may therefore be less sensitive to temperature changes. However, the large 
differences in spring onset timing and trends imply that plant phenology may experience index-related variability 
and uncertainty as large as or larger than model uncertainty for a given index.

The timing of spring onset has been advancing over the NH, and the pace is likely to accelerate in the future. 
Although the start of spring trends in the most recent decade exhibit large uncertainty (Wang et al., 2019), both 
observations and satellite remote sensing records suggest a long-term advancing trend of spring onset timing 
(Ault, Schwartz, et al., 2015; Cook et al., 2012; Parmesan & Yohe, 2003; Root et al., 2003; White et al., 2009). 
We have similarly found earlier spring onset during 1950–2014 in both thermal- and LAI-based indicators which 
have also been accelerating at mid-to-high latitudes. While thermal-based indices like SI-x have been shown to 
be good indicators of spring onset variability (e.g., Ault, Schwartz, et al., 2015; Gerst et al., 2020) and widely 
adopted to assess future changes in spring onset timing (Allstadt et al., 2015; Zhu et al., 2019), other environmen-
tal factors (e.g., chilling, soil moisture, photoperiod) also influence the start of spring (Flynn & Wolkovich, 2018; 
Fu et  al.,  2015; Laube et  al.,  2014). In addition, changing environments may favor some species and trigger 
further changes in ecosystem structure and composition (Renner & Zohner, 2018; Wang et al., 2016). Studies 
also suggested potential regime shifts to more soil moisture-limited plant growth and land-atmosphere coupling 
in previously temperature-dominated regions (e.g., Denissen et al., 2022; Green et al., 2017) and thermal-based 
indicators may need to be adopted with more caution in these regions. Meanwhile, frost risk may also vary as 
climatic conditions change (Park et al., 2021; Rigby & Porporato, 2008; Zohner et al., 2020), posing additional 
uncertainty to how natural and managed ecosystems adapt to climate change. Therefore, it is critical to evaluate 
trends and variability of spring onset in climate models using both meteorological- and ecological-based indica-
tors and update our predictions as we improve our forecasting approaches.

Agreement between thermal- and LAI-based indicators depends on the phenology schemes adopted in the 
climate models (Figures S10, S12, and Table S2 in Supporting Information S1), and the disagreements may 
further increase the uncertainty in temperature and spring onset projections. LAI- and thermal-based indicators 
show stronger agreement when phenology is prognostically simulated at higher temporal resolution (i.e., daily 
or finer). Though temperature dominates spring onset timing of LAI25% at higher latitudes, phenology schemes 
with only temperature criteria have a higher correlation with SI-x leaf at lower latitudes than phenology schemes 
with both temperature and soil moisture switches or implicit phenology. As soil moisture and precipitation can 
be important in triggering spring onset in moisture-limited environments (Dahlin et al., 2015, 2017), the relative 
importance of temperature may be overestimated in temperature-dominated phenology schemes, though trends 
of LAI25% still indicate less advancement in spring onset than SI-x leaf in these models. Moreover, interactions 
between phenology and other model components can affect the phenological triggers and further cause discrep-
ancies in plant phenology (e.g., Li et al., 2022). As changes in phenology and growing season length modulate 
surface temperature (Li, Ault, Richardson, et al., 2023; Lorenz et al., 2013; Xu et al., 2020), these disagreements 
between thermal- and vegetation-based indicators may undermine the credibility of temperature projections and 
further increase the uncertainty in spring onset timing.

Leaf phenology in land surface models is determined by the phenology scheme as well as environmental factors 
like temperature and soil moisture, and their relative importance varies with different model settings. In models 
where phenology is prescribed or explicitly simulated, when growing season starts is regulated by the phenology 
scheme for deciduous PFTs, but leaf development also depends on carbon allocation to the leaf carbon pool and 
therefore photosynthesis and net primary production. For models with implicit phenology, because photosynthe-
sis and respiration are sensitive to meteorological conditions and LAI follows biomass, LAI-based spring onset 
can exhibit better agreement with SI-x than models with explicit phenology schemes. In addition, models exhibit 
smaller discrepancies in their SI-x estimates than LAI-based indicators as variability in SI-x are mostly driven 
by thermal changes and the representation of air temperature is more similar in models than plant phenology. 
Overall, better agreement among models and between indicators are present in temperature-limited regions and 
divergence among models in SI-x is much smaller than that in LAI-based indicators. The largest disagreement 
between thermal- and vegetation-based indicators is present in more soil moisture-limited regions at mid-to-low 
latitudes that are mostly dominated by grasses, broadleaf forests, and crops.

Plant phenology regulates the terrestrial carbon cycle and land-atmosphere coupling in Earth system models 
as it influences critical processes such as photosynthesis, respiration, and evapotranspiration, yet our results 
show large disagreements in both the timing and trends of spring onset among models and between models and 
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observations. As LAI-based indicators exhibit weaker trends toward earlier onset and larger inter-model discrep-
ancies than thermal-based indicators, the bias between LAI- and thermal-based spring onset timing may continue 
to increase in the future, resulting in greater uncertainties in projected spring onset timing. In certain cases, 
this index-based uncertainty can be larger than inter-model uncertainty for a given index. Indicator models  can 
provide inference on spring onset trends and variability and help isolate the influence of climate factors, but 
larger uncertainties are present under a warmer climate due to phenology responses to other abiotic and biotic 
factors. Therefore, studies interested in projected changes in spring phenology should consider variabilities in 
both meteorological- and vegetation-based indicators, and future work should focus on understanding LAI varia-
bility and improving phenology representation in climate models.
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